Home » Popular » 17 Equations That Changed the World

17 Equations That Changed the World

In Pursuit of the Unknown: 17 Equations That Changed the World is a 2012 nonfiction book by British mathematician Ian Stewart FRS CMath FIMA, published by Basic Books. In the book Stewart traced a history of the role of mathematics in human history, beginning with the Pythagorean theorem to the equation that transformed the twenty-first-century financial market, the Black–Scholes model.

Seventeen equations are described in the book as follows:

  1. Pythagorean equation
    a^{2}+b^{2}=c^{2}
  2. Logarithm product identity
    {\displaystyle \log {xy}=\log {x}+\log {y}}
  3. Derivative
    {\displaystyle {\frac {df}{dt}}=\lim _{h\to 0}{\frac {f(t+h)-f(t)}{h}}}
  4. Newton’s law of universal gravitation,
     {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}
  5. Imaginary unit,
     {\displaystyle i^{2}=-1}
  6. Euler’s polyhedron formula
    {\displaystyle V-E+F=2}
  7. Normal distribution
    {\displaystyle \mathbf {\Phi } (x)={\frac {1}{\sqrt {2\pi \rho }}}e^{\frac {(x-\mu )^{2}}{2\rho ^{2}}}}
  8. Wave equation in one space dimension,
    {\displaystyle {\frac {\partial ^{2}u}{\partial t^{2}}}=c^{2}{\frac {\partial ^{2}u}{\partial x^{2}}}}
  9. Fourier transform,
     {\displaystyle f(\omega )=\int _{-\infty }^{\infty }f(x)\ e^{-2\pi ix\omega }dx}
  10. Navier–Stokes momentum equation
    {\displaystyle \rho \left({\frac {\partial \mathbf {v} }{\partial t}}+\mathbf {v} \cdot \nabla \mathbf {v} \right)=-\nabla p+\nabla \cdot \mathbf {T} +\mathbf {f} }
  11. Maxwell’s equations
    \nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}\nabla \cdot {\mathbf  {H}}=0{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {H} }{\partial t}}}{\displaystyle \nabla \times \mathbf {H} =\mu _{0}\left(\mathbf {J} +\varepsilon _{0}{\frac {\partial \mathbf {H} }{\partial t}}\right)}
  12. Entropy and the second law of thermodynamics
    {\displaystyle dS\geq 0}
  13. Mass–energy equivalence
    E=mc^{2}
  14. Time-dependent Schrödinger equation
    {\displaystyle i\hbar {\frac {\partial }{\partial t}}\mathbf {\Psi } =H\mathbf {\Psi } }
  15. Entropy in information theory
    {\displaystyle H=-\sum p(x)\log p(x)}
  16. Logistic map
    {\displaystyle x_{t+1}=kx_{t}\left(1-x_{t}\right)}
  17. Black–Scholes equation
    {\displaystyle {\frac {1}{2}}\sigma ^{2}S^{2}{\frac {\partial ^{2}V}{\partial S^{2}}}+rS{\frac {\partial V}{\partial S}}+{\frac {\partial V}{\partial t}}-rV=0}

References:

Powered by WordPress / Academica WordPress Theme by WPZOOM