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CHAPTER 5
Reflection and Transmission

5.1 INTRODUCTION

In the previous chapter we discussed solutions to TEM waves in unbounded media. In real-world
problems, however, the fields encounter boundaries, scatterers, and other objects. Therefore the
fields must be found by taking into account these discontinuities.

In this chapter we want to discuss TEM field solutions in two semi-infinite lossless and lossy
media bounded by a planar boundary of infinite extent. Reflection and transmission coefficients
will be derived to account for the reflection and transmission of the fields by the boundary. These
coefficients will be functions of the constitutive parameters of the two media, the direction of
wave travel (angle of incidence), and the direction of the electric and magnetic fields (wave
polarization).

In general, the reflection and transmission coefficients are complex quantities. It will be demon-
strated that their amplitudes and phases can be varied by controlling the direction of wave travel
(angle of incidence). In fact, for one wave polarization (parallel polarization) the reflection coef-
ficient can be made equal to zero. When this occurs, the angle of incidence is known as the
Brewster angle. This principle is used in the design of many instruments (such as binoculars).

The magnitude of the reflection coefficient can also be made equal to unity by properly selecting
the wave incidence angle. This angle is known as the critical angle, and it is independent of wave
polarization; however, in order for this angle to occur, the incident wave must exist in the denser
medium. The critical angle concept plays a crucial role in the design of transmission lines (such
as optical fiber, slab wave-guides, and coated conductors; the microstrip is one example).

5.2 NORMAL INCIDENCE—LOSSLESS MEDIA

We begin the discussion of reflection and transmission from planar boundaries of lossless media
by assuming the wave travels perpendicular (normal incidence) to the planar interface formed
by two semi-infinite lossless media, as shown in Figure 5-1, each characterized by the con-
stitutive parameters of ε1, μ1 and ε2, μ2. When the incident wave encounters the interface, a
fraction of the wave intensity will be reflected into medium 1 and part will be transmitted into
medium 2.

Assuming the incident electric field of amplitude E0 is polarized in the x direction, we can write
expressions for its incident, reflected, and transmitted electric field components, respectively, as

Ei = âx E0e−jβ1z (5-1a)
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Figure 5-1 Wave reflection and transmission at normal incidence by a planar interface.

Er = âx�
bE0e+jβ1z (5-1b)

Et = âx T bE0e−jβ2z (5-1c)

where �b and T b are used here to represent, respectively, the reflection and transmission coef-
ficients at the interface. Presently these coefficients are unknowns and will be determined by
applying boundary conditions on the fields along the interface. Since the incident fields are lin-
early polarized and the reflecting surface is planar, the reflected and transmitted fields will also
be linearly polarized. Because we do not know the direction of polarization (positive or negative)
of the reflected and transmitted electric fields, they are assumed here to be in the same direc-
tion (positive) as the incident electric fields. If that is not the case, it will be corrected by the
appropriate signs on the reflection and transmission coefficients.

Using the right-hand procedure outlined in Section 4.2.1 or Maxwell’s equations 4-3 or 4-3a,
the magnetic field components corresponding to (5-1a) through (5-1c) can be written as

Hi = ây
E0

η1
e−jβ1z (5-2a)

Hr = −ây
�bE0

η1
e+jβ1z (5-2b)

Ht = ây
T bE0

η2
e−jβ2z (5-2c)
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The reflection and transmission coefficients will now be determined by enforcing continuity
of the tangential components of the electric and magnetic fields across the interface. Using (5-1a)
through (5-2c), continuity of the tangential components of the electric and magnetic fields at the
interface (z = 0) leads, respectively, to

1 + �b = T b (5-3a)

1

η1
(1 − �b) = 1

η2
T b (5-3b)

Solving these two equations for �b and T b , we can write that

�b = η2 − η1

η2 + η1
= E r

E i
= −H r

H i
(5-4a)

T b = 2η2

η1 + η2
= 1 + �b = E t

E i
= η2

η1

H t

H i
(5-4b)

Therefore the plane wave reflection and transmission coefficients of a planar interface for
normal incidence are functions of the constitutive properties, and they are given by (5-4a) and
(5-4b). Since the angle of incidence is fixed at normal, the reflection coefficient cannot be equal
to zero unless η2 = η1. For most dielectric material, aside from ferromagnetics, this implies that
ε2 = ε1 since for them μ1 � μ2.

Away from the interface the reflection � and transmission T coefficients are related to those
at the boundary (�b , T b) and can be written, respectively, as

�(z = −�1) = E r (z )

E i (z )

∣∣∣∣
z=−�1

= �bE0e+jβ1z

E0e−jβ1z

∣∣∣∣
z=−�1

= �be−j 2β1�1 (5-5a)

T

(
z2 = �2,
z1 = −�1

)
= E t (z2)|z2=�2

E i (z1)|z1=−�1

= T bE0e−jβ2�2

E0e+jβ1�1
= T be−j (β2�2+β1�1) (5-5b)

where �1 and �2 are positive distances measured from the interface to media 1 and 2, respectively.
Associated with the electric and magnetic fields (5-1a) through (5-2c) are corresponding aver-

age power densities that can be written as

Si
av = 1

2
Re(Ei × Hi∗) = âz

|E0|2
2η1

(5-6a)

Sr
av = 1

2
Re(Er × Hr∗

) = −âz |�b |2 |E0|2
2η1

= −âz |�b |2S i
av (5-6b)

St
av = 1

2
Re(Et × Ht∗) = âz |T b |2 |E0|2

2η2
= âz |T b |2 η1

η2

|E0|2
2η1

= âz |T b |2 η1

η2
S i

av = âz
(
1 − |�b |2) S i

av (5-6c)
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It is apparent that the ratio of the reflected to the incident power densities is equal to the
square of the magnitude of the reflection coefficient. However, the ratio of the transmitted to the
incident power density is not equal to the square of the magnitude of the transmission coefficient;
this is one of the most common errors. Instead the ratio is proportional to the magnitude of the
transmission coefficient squared and weighted by the intrinsic impedances of the two media, as
given by (5-6c). Remember that the reflection and transmission coefficients relate the reflected and
transmitted field intensities to the incident field intensity. Since the total tangential components of
these field intensities on either side must be continuous across the boundary, the transmitted field
could be greater than the incident field, which would require a transmission coefficient greater
than unity. However, by the conservation of power, it is well known that the transmitted power
density cannot exceed the incident power density.

Example 5-1

A uniform plane wave traveling in free space is incident normally upon a flat semi-infinite lossless
medium with a dielectric constant of 2.56 (being representative of polystyrene). Determine the reflection
and transmission coefficients as well as the incident, reflected, and transmitted power densities. Assume
that the amplitude of the incident electric field at the interface is 1 mV/m.

Solution: Since ε1 = ε0 and ε2 = 2.56ε0,

μ1 = μ2 = μ0

then

η1 =
√

μ1

ε1
=

√
μ0

ε0

η2 =
√

μ2

ε2
=

√
μ0

2.56ε0
= 1

1.6

√
μ0

ε0
= η1

1.6

Thus according to (5-4a) and (5-4b)

�b = η2 − η1

η2 + η1
=

1

1.6
− 1

1

1.6
+ 1

= 1 − 1.6

1 + 1.6
= −0.231

T b = 2η2

η1 + η2
=

2

(
1

1.6

)
1 + 1

1.6

= 2

2.6
= 0.769

In addition, the incident, reflected, and transmitted power densities are obtained using, respectively,
(5-6a), (5-6b), and (5-6c). Thus

S i
av = |E0|2

2η1
= (10−3)2

2(376.73)
= 1.327 × 10−9 W/m2 = 1.327 nW/m2

S r
av = |�b |2S i

av = | − 0.231|2(1.327) × 10−9 = 0.071 nW/m2

S t
av = |T b |2 η1

η2
S i

av = |0.769|2 1

1/1.6
(1.327) × 10−9 = 1.256 nW/m2

or
S t

av = (1 − |�b |2)S i
av = (1 − |0.231|2)(1.327) × 10−9 = 1.256 nW/m2
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In medium 1, the total field is equal to the sum of the incident and reflected fields. Thus, for the
total electric and magnetic fields in medium 1, we can write that

E1 = Ei + Er = âx E0e−jβ1z︸ ︷︷ ︸
traveling

wave

(1 + �be+j 2β1z )︸ ︷︷ ︸
standing

wave

= âx E0e−jβ1z [1 + �(z )] (5-7a)

H1 = Hi + Hr = ây (E0/η1)e
−jβ1z︸ ︷︷ ︸

traveling
wave

(1 − �be+j 2β1z )︸ ︷︷ ︸
standing

wave

= ây
E0

η1
e−jβ1z [1 − �(z )] (5-7b)

In each expression the factors outside the parentheses represent the traveling wave part of the wave
and those within the parentheses represent the standing wave part . Therefore the total field of two waves
is the product of one of the waves times a factor that in this case is the standing wave pattern. This
is analogous to the array multiplication rule in antennas where the total field of an array of identical
elements is equal to the product of the field of a single element times a factor that is referred to as the
array factor [1].

As discussed in Section 4.2.1D, the ratio of the maximum value of the electric field magnitude to
that of the minimum is defined as the standing wave ratio (SWR), and it is given here by

SWR = |E1|max

|E1|min
= 1 + |�b |

1 − |�b | =
1 +

∣∣∣∣η2 − η1

η2 + η1

∣∣∣∣
1 −

∣∣∣∣η2 − η1

η2 + η1

∣∣∣∣ (5-8)

For two media with identical permeabilities (μ1 = μ2), the SWR can be written as

SWR =
∣∣√ε1 + √

ε2
∣∣ + ∣∣√ε1 − √

ε2
∣∣∣∣√ε1 + √

ε2
∣∣ − ∣∣√ε1 − √

ε2
∣∣ =

⎧⎪⎪⎨⎪⎪⎩
√

ε1

ε2
, ε1 > ε2√

ε2

ε1
, ε2 > ε1

(5-9a)

(5-9b)

5.3 OBLIQUE INCIDENCE—LOSSLESS MEDIA

To analyze reflections and transmissions at oblique wave incidence, we need to introduce the
plane of incidence, which is defined as the plane formed by a unit vector normal to the reflecting
interface and the vector in the direction of incidence. For a wave whose wave vector is on the xz
plane and is incident upon an interface that is parallel to the xy plane, as shown in Figure 5-2,
the plane of incidence is the xz plane.

To examine reflections and transmissions at oblique angles of incidence for a general wave
polarization, it is most convenient to decompose the electric field into its perpendicular and
parallel components (relative to the plane of incidence) and analyze each one of them individually.
The total reflected and transmitted field will be the vector sum of these two polarizations.

When the electric field is perpendicular to the plane of incidence, the polarization of the wave
is referred to as perpendicular polarization . Since the electric field is parallel to the interface,
it is also known as horizontal or E polarization . When the electric field is parallel to the plane
of incidence, the polarization is referred to as parallel polarization . Because a component of
the electric field is also perpendicular to the interface when the magnetic field is parallel to the
interface, it is also known as vertical or H polarization . Each type of polarization will be further
examined.
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Figure 5-2 Perpendicular (horizontal) polarized uniform plane wave incident at an oblique angle on an
interface.

5.3.1 Perpendicular (Horizontal or E) Polarization

Let us now assume that the electric field of the uniform plane wave incident on a planar interface
at an oblique angle, as shown in Figure 5-2, is oriented perpendicularly to the plane of incidence.
As previously stated, this is referred to as the perpendicular polarization.

Using the techniques outlined in Section 4.2.2, the incident electric and magnetic fields can
be written as

Ei
⊥ = ây E i

⊥e−jβi • r = ây E0e−jβ1(x sin θi +z cos θi ) (5-10a)

Hi
⊥ = (−âx cos θi + âz sin θi ) H i

⊥e−jβi • r

= (−âx cos θi + âz sin θi )
E0

η1
e−jβ1(x sin θi +z cos θi ) (5-10b)

where

E i
⊥ = E0 (5-10c)

H i
⊥ = E i

⊥
η1

= E0

η1
(5-10d)

Similarly, the reflected fields can be expressed as

Er
⊥ = ây E r

⊥e−jβr • r = ây�
b
⊥E0e−jβ1(x sin θr −z cos θr ) (5-11a)

Hr
⊥ = (âx cos θr + âz sin θr ) H r

⊥e−jβr • r

= (âx cos θr + âz sin θr )
�b

⊥E0

η1
e−jβ1(x sin θr −z cos θr ) (5-11b)

where

E r
⊥ = �b

⊥E i = �b
⊥E0 (5-11c)

H r
⊥ = E r

⊥
η1

= �b
⊥E0

η1
(5-11d)
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Also the transmitted fields can be written as

Et
⊥ = ây E t

⊥e−jβt • r = ây T b
⊥E0e−jβ2(x sin θt +z cos θt ) (5-12a)

Ht
⊥ = (−âx cos θt + âz sin θt ) H t

⊥e−jβt • r

= (−âx cos θt + âz sin θt )
T b

⊥E0

η2
e−jβ2(x sin θt +z cos θt ) (5-12b)

where

E t
⊥ = T b

⊥E i
⊥ = T b

⊥E0 (5-12c)

H t
⊥ = E t

⊥
η2

= T b
⊥E0

η2
(5-12d)

The reflection �b
⊥ and transmission T b

⊥ coefficients, and the relation between the incident θi ,
reflected θr , and transmission (refracted) θt angles can be obtained by applying the boundary
conditions on the continuity of the tangential components of the electric and magnetic fields.
That is (

Ei
⊥ + Er

⊥
) ∣∣tan

z=0
= (

Et
⊥
) ∣∣tan

z=0
(5-13a)(

Hi
⊥ + Hr

⊥
) ∣∣tan

z=0
= (

Ht
⊥
) ∣∣tan

z=0
(5-13b)

Using the appropriate terms of (5-10a) through (5-12d), (5-13a) and (5-13b) can be written,
respectively, as

e−jβ1x sin θi + �b
⊥e−jβ1x sin θr = T b

⊥e−jβ2x sin θt (5-14a)

1

η1

(− cos θi e
−jβ1x sin θi + �b

⊥ cos θr e−jβ1x sin θr
) = −T b

⊥
η2

cos θt e
−jβ2x sin θt (5-14b)

Whereas (5-14a) and (5-14b) represent two equations with four unknowns (�b
⊥, T b

⊥, θr , θt ), it
should be noted that each equation is complex. By equating the corresponding real and imaginary
parts of each side, each can be reduced to two equations (a total of four). If this procedure is
utilized, it will be concluded that (5-14a) and (5-14b) lead to the following two relations:

θr = θi (Snell’s law of reflection) (5-15a)

β1 sin θi = β2 sin θt (Snell’s law of refraction) (5-15b)

Using (5-15a) and (5-15b) reduces (5-14a) and (5-14b) to

1 + �b
⊥ = T b

⊥ (5-16a)

cos θi

η1

(−1 + �b
⊥
) = −cos θt

η2
T b

⊥ (5-16b)

Solving (5-16a) and (5-16b) simultaneously for �b
⊥ and T b

⊥ leads to

�b
⊥ = E r

⊥
E i

⊥
= η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
=

√
μ2

ε2
cos θi −

√
μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

(5-17a)
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T b
⊥ = E t

⊥
E i

⊥
= 2η2 cos θi

η2 cos θi + η1 cos θt
=

2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

(5-17b)

�b
⊥ and T b

⊥ of (5-17a) and (5-17b) are usually referred to as the plane wave Fresnel reflection
and transmission coefficients for perpendicular polarization.

Since for most dielectric media (excluding ferromagnetic material) μ1 � μ2 � μ0, (5-17a) and
(5-17b) reduce, by also utilizing (5-15b), to

�b
⊥
∣∣
μ1=μ2

=
cos θi −

√
ε2

ε1

√
1 −

(
ε1

ε2

)
sin2 θi

cos θi +
√

ε2

ε1

√
1 −

(
ε1

ε2

)
sin2 θi

(5-18a)

T b
⊥
∣∣
μ1=μ2

= 2 cos θi

cos θi +
√

ε2

ε1

√
1 −

(
ε1

ε2

)
sin2 θi

(5-18b)

Plots of |�b
⊥| and |T b

⊥| of (5-18a) and (5-18b) for ε2/ε1 = 2.56, 4, 9, 16, 25, and 81 as a
function of θi are shown in Figure 5-3. It is apparent that as the relative ratio of ε2/ε1 increases,
the magnitude of the reflection coefficient increases, whereas that of the transmission coeffi-
cient decreases. This is expected since large ratios of ε2/ε1 project larger discontinuities in the
dielectric properties of the media along the interface. Also it is observed that for ε2 > ε1 the
magnitude of the reflection coefficient never vanishes regardless of the ε2/ε1 ratio or the angle of
incidence.

For ε2/ε1 > 1, both �b
⊥ and T b

⊥ are real with �b
⊥ being negative and T b

⊥ being positive for all
angles of incidence. Therefore, as a function of θi , the phase of �b

⊥ is equal to 180◦ and that
of the transmission coefficient T b

⊥ is zero. When ε2/ε1 = 1 the reflection coefficient vanishes
and the transmission coefficient reduces to unity. When ε2/ε1 < 1, both �b

⊥ and T b
⊥ are real

when the incidence angle θi ≤ θc ; for θi > θc , they become complex. The angle θi for which
|�b

⊥|ε2/ε1<1(θi = θc) = 1 is referred to as the critical angle, and it represents conditions of total
internal reflection. More discussion on the critical angle (θi = θc) and the wave propagation for
θi > θc can be found in Section 5.3.4.

In medium 1 the total electric field can be written as

E1
⊥ = Ei

⊥ + Er
⊥ = ây E0e−jβ1(x sin θ1+z cos θi )︸ ︷︷ ︸

traveling wave

[
1 + �b

⊥e+j 2β1z cos θi
]︸ ︷︷ ︸

standing wave

= ây E0e−jβ1(x sin θi +z cos θi ) [1 + �⊥(z )] (5-19)

where

�⊥(z ) = �b
⊥e+j 2β1z cos θi (5-19a)



Balanis c05.tex V3 - 11/23/2011 11:47 A.M. Page 181

OBLIQUE INCIDENCE—LOSSLESS MEDIA 181

e2
e1

= 81

e2
e1

= 25

e2
e1

= 16

e2
e1

= 9

e2
e1

= 4

e2
e1

= 2.56

0.00

0.25

15 30 45 60 75 90

0.50

0.75

1.00

0

Incident angle qi (degrees)
(a)

R
ef

le
ct

io
n 

co
ef

fi
ci

en
t 

e2
e1

= 2.56

e2
e1

= 9

e2
e1

= 4

e2
e1

= 25

e2
e1

= 16

e2
e1

= 81

0.00

0.25

15 30 45 60 75 90

0.50

0.75

1.00

0

Incident angle qi (degrees)
(b)

Tr
an

sm
is

si
on

 c
oe

ff
ic

ie
nt

 
T

b  
Γb  

Figure 5-3 Magnitude of coefficients for perpendicular polarization as a function of incident angle.
(a) Reflection. (b) Transmission.
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Figure 5-4 Parallel (vertical) polarized uniform plane wave incident at an oblique angle on an interface.

5.3.2 Parallel (Vertical or H) Polarization

For this polarization the electric field is parallel to the plane of incidence and it impinges upon a
planar interface as shown in Figure 5-4. The directions of the incident, reflected, and transmitted
electric and magnetic fields in Figure 5-4 are chosen so that for the special case of θi = 0 they
reduce to those of Figure 5-1.

Using the techniques outlined in Section 4.2.2, we can write that

Ei
|| = (âx cos θi − âz sin θi )E0e−jβi • r

= (âx cos θi − âz sin θi )E0e−jβ1(x sin θi +z cos θi ) (5-20a)

Hi
|| = ây H i

|| e
−jβi • r = ây

E0

η1
e−jβ1(x sin θi +z cos θi ) (5-20b)

where

E i
|| = E0 (5-20c)

H i
|| = E i

||
η1

= E0

η1
(5-20d)

Similarly,

Er
|| = (âx cos θr + âz sin θr )E

r e−jβr • r

= (âx cos θr + âz sin θr )�
b
|| E0e−jβ1(x sin θr −z cos θr ) (5-21a)

Hr
|| = −ây H r

|| e−jβr • r = −ây

�b
|| E0

η1
e−jβ1(x sin θr −z cos θr ) (5-21b)

where

E r
|| = �b

|| E
i = �b

|| E0 (5-21c)

H r
|| = E r

||
η1

= �b
|| E0

η1
(5-21d)
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Also,

Et
|| = (âx cos θt − âz sin θt )E

t
||e

−jβt • r

= (âx cos θt − âz sin θt )T
b
|| E0e−jβ2(x sin θt +z cos θt ) (5-22a)

Ht
|| = ây H t

|| e
−jβt • r = ây

T b
|| E0

η2
e−jβ2(x sin θt +z cos θt ) (5-22b)

where

E t
|| = T b

|| E i = T b
|| E0 (5-22c)

H t
|| = E t

||
η2

= T b
|| E0

η2
(5-22d)

As before, the reflection �b
|| and transmission T b

|| coefficients, and the reflection θr and trans-
mission (refraction) θt angles are the four unknowns. These can be determined and expressed in
terms of the incident angle θi and the constitutive parameters of the two media by applying the
boundary conditions on the continuity across the interface (z = 0) of the tangential components
of the electric and magnetic fields as given by (5-13a) and (5-13b) and applied to parallel polar-
ization. Using the appropriate terms of (5-20a) through (5-22d), we can write (5-13a) and (5-13b)
as applied to parallel polarization, respectively, as

cos θi e
−jβ1x sin θi + �b

|| cos θr e−jβ1x sin θr = T b
|| cos θt e

−jβ2x sin θt (5-23a)

1

η1

(
e−jβ1x sin θi − �b

|| e
−jβ1x sin θr

) = 1

η2
T b

|| e−jβ2x sin θt (5-23b)

Following the procedure outlined in Section 5.3.1 for the solution of (5-14a) and (5-14b), it
can be shown that (5-23a) and (5-23b) reduce to

θr = θi (Snell’s law of reflection) (5-24a)

β1 sin θi = β2 sin θt (Snell’s law of refraction) (5-24b)

�b
|| = −η1 cos θi + η2 cos θt

η1 cos θi + η2 cos θt
=

−
√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt

(5-24c)

T b
|| = 2η2 cos θi

η1 cos θi + η2 cos θt
=

2
√

μ2

ε2
cos θi√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt

(5-24d)

�b
|| and T b

|| of (5-24c) and (5-24d) are usually referred to as the plane wave Fresnel reflection
and transmission coefficients for parallel polarization.
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Excluding ferromagnetic material, (5-24c) and (5-24d) reduce, using also (5-24b), to

�b
||
∣∣
μ1=μ2

=
− cos θi +

√
ε1

ε2

√
1 −

(
ε1

ε2

)
sin2 θi

cos θi +
√

ε1

ε2

√
1 −

(
ε1

ε2

)
sin2 θi

(5-25a)

T b
||
∣∣
μ1=μ2

=
2
√

ε1

ε2
cos θi

cos θi +
√

ε1

ε2

√
1 −

(
ε1

ε2

)
sin2 θi

(5-25b)

Plots of |�b
|| | and |T b

|| | of (5-25a) and (5-25b) for ε2/ε1 = 2.56, 4, 9, 16, 25, and 81 as a function of
θi are shown in Figure 5-5. It is observed in Figure 5-5a that for this polarization there is an angle
where the reflection coefficient does vanish. The angle where the reflection coefficient vanishes
is referred to as the Brewster angle, θB, and it increases toward 90◦ as the ratio ε2/ε1 becomes
larger. More discussion on the Brewster angle can be found in the next section (Section 5.3.3).

For ε2/ε1 > 1, �b
|| and T b

|| are both real. For angles of incidence less than the Brewster angle
(θi < θB), �b

|| is negative, indicating a 180◦ phase as a function of the incident angle; for
θi > θB, �b

|| is positive, representing a 0◦ phase. The transmission coefficient T b
|| is positive for all

values of θi , indicating a 0◦ phase. When ε2/ε1 = 1, the reflection coefficient vanishes and the
transmission coefficient reduces to unity. As for the perpendicular polarization, when ε2/ε1 < 1
both �b

|| and T b
|| are real when the incident angle θi ≤ θc ; after that, they become complex. The

angle for which |�b
|| |ε2/ε1<1(θi = θc) = 1 is again referred to as critical angle, and it represents

conditions of total internal reflection. Further discussion of the critical angle (θi = θc) and the
wave propagation for θi > θc can be found in Section 5.3.4. It is evident that the critical angle is
not a function of polarization; it occurs only when the wave propagates from the more dense to
the less dense medium.

The total electric field in medium 1 can be written as

E1
|| = Ei

|| + Er
|| = âx cos θi E0e−jβ1(x sin θi +z cos θi )︸ ︷︷ ︸

traveling wave

[
1 + �b

|| e
+j 2β1z cos θi

]︸ ︷︷ ︸
standing wave

−âz sin θi E0e−jβ1(x sin θi +z cos θi )︸ ︷︷ ︸
traveling wave

[
1 − �b

|| e
+j 2β1z cos θi

]︸ ︷︷ ︸
standing wave

E1
|| = E1

x + E1
z = âx cos θi E0e−jβ1(x sin θi +z cos θi )

[
1 + �|| (z )

]
−âz sin θi E0e−jβ1(x sin θi +x cos θi )

[
1 − �|| (z )

]
(5-26)

where

�|| (z ) = �b
|| e

+j 2β1z cos θi (5-26a)

5.3.3 Total Transmission–Brewster Angle

The reflection and transmission coefficients for both perpendicular and parallel polarizations are
functions of the constitutive parameters of the two media forming the interface, the angle of
incidence, and the angle of refraction that is related to the angle of incidence through Snell’s law
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Figure 5-5 Magnitude of coefficients for parallel polarization as a function of incident angle. (a) Reflection.
(b) Transmission.
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of refraction. One may ask: “For a given set of constitutive parameters of two media forming
an interface, is there an incidence angle that allows no reflection, i.e., � = 0?” To answer this
we need to refer back to the expressions for the reflection coefficients as given by (5-17a) and
(5-24c).

A. Perpendicular (Horizontal) Polarization To see the conditions under which the reflection
coefficient of (5-17a) will vanish, we set it equal to zero, which leads to

�b
⊥ =

√
μ2

ε2
cos θi −

√
μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

= 0 (5-27)

or

cos θi =
√

μ1

μ2

(
ε2

ε1

)
cos θt (5-27a)

Using Snell’s law of refraction, as given by (5-15b), (5-27a) can be written as

(1 − sin2 θi ) = μ1

μ2

(
ε2

ε1

)
(1 − sin2 θt )

(1 − sin2 θi ) = μ1

μ2

(
ε2

ε1

)[
1 − μ1

μ2

(
ε1

ε2

)
sin2 θi

]
(5-28)

or

sin θi =

ε2

ε1
−

μ2

μ1
μ1

μ2
−

μ2

μ1
(5-28a)

Since the sine function cannot exceed unity, (5-28a) exists only if

ε2

ε1
− μ2

μ1
≤ μ1

μ2
− μ2

μ1
(5-29)

or
ε2

ε1
≤ μ1

μ2
(5-29a)

If however μ1 = μ2, (5-28a) indicates that

sin θi |μ1=μ2 = ∞ (5-29b)

Therefore there exists no real angle θi under this condition that will reduce the reflection coeffi-
cient to zero. Since the permeability for most dielectric material (aside from ferromagnetics) is
almost the same and equal to that of free space (μ1 � μ2 � μ0), for these materials there exists
no real incidence angle that will reduce the reflection coefficient for perpendicular polarization
to zero.
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B. Parallel (Vertical) Polarization To examine the conditions under which the reflection
coefficient for parallel polarization will vanish, we set (5-24c) equal to zero; that is

�b
|| =

−
√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt√

μ1

ε1
cos θi +

√
μ2

ε2
cos θt

= 0 (5-30)

or

cos θi =
√

μ2

μ1

(
ε1

ε2

)
cos θt (5-30a)

Using Snell’s law of refraction, as given by (5-24b), (5-30a) can be written as(
1 − sin2 θi

) = μ2

μ1

(
ε1

ε2

)
(1 − sin2 θt )

(1 − sin2 θi ) = μ2

μ1

(
ε1

ε2

)[
1 − μ1

μ2

(
ε1

ε2

)
sin2 θi

]
(5-31)

or

sin θi =

ε2

ε1
−

μ2

μ1

−
ε2

ε1

ε1

ε2
(5-31a)

Since the sine function cannot exceed unity, (5-31a) exists only if

ε2

ε1
− μ2

μ1
≤ ε2

ε1
− ε1

ε2
(5-32)

or
μ2

μ1
≥ ε1

ε2
(5-32a)

If, however, μ1 = μ2, (5-31a) reduces to

θi = θB = sin−1

(√
ε2

ε1 + ε2

)
(5-33)

The incident angle θi , as given by (5-31a) or (5-33), which reduces the reflection coefficient
for parallel polarization to zero, is referred to as the Brewster angle, θB. It should be noted that
when μ1 = μ2, the incidence Brewster angle θi = θB of (5-33) exists only if the polarization of
the wave is parallel (vertical).

Other forms of the Brewster angle, besides that given by (5-33), are

θi = θB = cos−1

(√
ε1

ε1 + ε2

)
(5-33a)

θi = θB = tan−1

(√
ε2

ε1

)
(5-33b)
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Example 5-2

A parallel polarized electromagnetic wave radiated from a submerged submarine impinges upon a
water–air planar interface. Assuming the water is lossless, its dielectric constant is 81, and the wave
approximates a plane wave at the interface, determine the angle of incidence to allow complete trans-
mission of the energy.

Solution: The angle of incidence that allows complete transmission of the energy is the Brewster
angle. Using (5-33b), the Brewster angle of the water–air interface is

θiwa = θBwa = tan−1
(√

ε0

81ε0

)
= tan−1

(
1

9

)
= 6.34◦

This indicates that the Brewster angle is close to the normal to the interface.

Example 5-3

Repeat the problem of Example 5-2 assuming that the same wave is radiated from a spacecraft in air,
and it impinges upon the air–water interface.

Solution: The Brewster angle for an air–water interface is

θiaw = θBaw = tan−1

(√
81ε0

ε0

)
= tan−1(9) = 83.66◦

It is apparent that the sum of the Brewster angle of Example 5-2 (water–air interface) plus that of
Example 5-3 (air–water interface) is equal to 90◦. That is

θBwa + θBaw = 6.34◦ + 83.66◦ = 90◦

From trigonometry, it is obvious that the preceding relation is always going to hold, no matter what
two media form the interface.

5.3.4 Total Reflection–Critical Angle

In Section 5.3.3 we found the angles that allow total transmission for perpendicular, (5-28a), and
parallel, (5-31a), polarizations. When the permeabilities of the two media forming the interface
are the same (μ1 = μ2), only parallel polarized fields possess an incidence angle that allows
total transmission. As before, that angle is known as the Brewster angle, and it is given by either
(5-33), (5-33a), or (5-33b).

The next question we will consider is: “Is there an incident angle that allows total reflection of
energy at a planar interface?” If this is possible, then |�| = 1. To determine the conditions under
which this can be accomplished, we proceed in a similar manner as for the total transmission
case of Section 5.3.3.

A. Perpendicular (Horizontal) Polarization To see the conditions under which the mag-
nitude of the reflection coefficient is equal to unity, we set the magnitude of (5-17a) equal
to ∣∣∣∣√μ2

ε2
cos θi −

√
μ1

ε1
cos θt

∣∣∣∣∣∣∣∣√μ2

ε2
cos θi +

√
μ1

ε1
cos θt

∣∣∣∣ = 1 (5-34)
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This is satisfied provided the second term in the numerator and denominator is imaginary. Using
Snell’s law of refraction, as given by (5-15b), the second term in the numerator and denominator
can be imaginary if

cos θt =
√

1 − sin2 θt =
√

1 − μ1ε1

μ2ε2
sin2 θi = −j

√
μ1ε1

μ2ε2
sin2 θi − 1 (5-35)

In order for (5-35) to hold
μ1ε1

μ2ε2
sin2 θi ≥ 1 (5-35a)

or

θi ≥ θc = sin−1

(√
μ2ε2

μ1ε1

)
(5-35b)

The incident angle θi of (5-35b) that allows total reflection is known as the critical angle. Since
the argument of the inverse sine function cannot exceed unity, then

μ2ε2 ≤ μ1ε1 (5-35c)

in order for the critical angle (5-35b) to be physically realizable.
If the permeabilities of the two media are the same (μ1 = μ2), then (5-35b) reduces to

θi ≥ θc = sin−1

(√
ε2

ε1

)
(5-36)

which leads to a physically realizable angle provided

ε2 ≤ ε1 (5-36a)

Therefore for two media with identical permeabilities (which is the case for most dielectrics,
aside from ferromagnetic material), the critical angle exists only if the wave propagates from a
more dense to a less dense medium, as stated by (5-36a).

Example 5-4

A perpendicularly polarized wave radiated from a submerged submarine impinges upon a water–air
interface. Assuming the water is lossless, its dielectric constant is 81, and the wave approximates a
plane wave at the interface, determine the angle of incidence that will allow complete reflection of the
energy at the interface.

Solution: The angle of incidence that allows complete reflection of energy is the critical angle. Since
for water μ2 = μ0, the critical angle is obtained using (5-36), which leads to

θi ≥ θc = sin−1
(√

ε0

81ε0

)
= 6.38◦

Since there is a large difference between the permittivities of the two media forming the interface, the
critical angle of this example is very nearly the same as the Brewster angle of Example 5-2.
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The next question we will answer is: “What happens to the angle of refraction and to the
propagation of the wave when the angle of incidence is equal to or greater than the critical
angle?”

When the angle of incidence is equal to the critical angle, the angle of refraction reduces,
through Snell’s law of refraction (5-15b) and (5-35b), to

θt = sin−1

(√
μ1ε1

μ2ε2
sin θi

)∣∣∣∣
θi =θc

= sin−1

(√
μ1ε1

μ2ε2

√
μ2ε2

μ1ε1

)
= sin−1(1) = 90◦ (5-37)

In turn the reflection and transmission coefficients reduce to

�b
⊥|θi =θc = 1 (5-38a)

T b
⊥|θi =θc = 2 (5-38b)

Also the transmitted fields of (5-12a) and (5-12b) can be written as

Et
⊥ = ây 2E0e−jβ2x (5-39a)

Ht
⊥ = âz

2E0

η2
e−jβ2x (5-39b)

which represent a plane wave that travels parallel to the interface in the +x direction as shown
in Figure 5-6a . The constant phase planes of the wave are parallel to the z axis. This wave is
referred to as a surface wave [2].

The average power density associated with the transmitted fields is given by

St
av|θi =θc = 1

2
Re

(
Et

⊥ × Ht∗
⊥
) ∣∣∣

θi =θc
= âx

2|E0|2
η2

(5-40)

and it does not contain any component normal to the interface. Therefore, there is no transfer of
real power across the interface in a direction normal to the boundary; thus, all power must be
reflected. This is also evident by examining the magnitude of the incident and reflected average
power densities associated with the fields (5-10a) through (5-11d) under critical angle incidence.
These are obviously identical and are given by

|Si
av|θi =θc =

∣∣∣∣1

2
Re

(
Ei

⊥ × Hi∗
⊥
)∣∣∣∣

θi =θc

= |E0|2
2ηi

|âx sin θi + âz cos θi | = |E0|2
2η1

(5-41a)

|Sr
av|θi =θc =

∣∣∣∣1

2
Re

(
Er

⊥ × Hr∗
⊥
)∣∣∣∣

θi =θc

= |E0|2
2η1

|âx sin θi − âz cos θi | = |E0|2
2η1

(5-41b)

When the angle of incidence θi is greater than the critical angle θc(θi > θc), Snell’s law of
refraction can be written as [3]

sin θt |θi > θc = β1

β2
sin θi

∣∣∣∣
θi >θc

=
√

μ1ε1

μ2ε2
sin θi

∣∣∣∣
θi > θc

> 1 (5-42a)

which can only be satisfied provided θt is complex, that is, θt = θR + jθX , where θX �= 0. Also

cos θt |θi > θc =
√

1 − sin2 θt

∣∣∣
θi > θc

=
√

1 − μ1ε1

μ2ε2
sin2 θi

∣∣∣∣
θi >θc

= ±j

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣
θi > θc

(5-42b)

which again indicates that θt is complex.
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Figure 5-6 Constant phase and amplitude planes for incident angles. (a) Critical (θi = θc). (b) Above
critical (θi >θc).

Therefore when θi > θc , there is no physically realizable angle θt . If not, what really does
happen to the wave propagation? Since under this condition θt is complex and not physically
realizable, this may be a clue that the wave in medium 2 is again a surface wave. To see this, let
us examine the field in medium 2, the reflection and transmission coefficients, and the average
power densities.

When the angle of incidence exceeds the critical angle (θi > θc), the transmitted E field of
(5-12a) can be written, using (5-15b) and (5-35b), as

Et
⊥|θi > θc = ây T b

⊥E0 exp(−jβ2x sin θt ) exp(−jβ2z cos θt )|θi > θc

= ây T b
⊥E0 exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]
exp

(
−jβ2z

√
1 − sin2 θt

)∣∣∣∣
θi > θc
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Et
⊥|θi > θc = ây T b

⊥E0 exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]
exp

(
−jβ2z

√
1 − μ1ε1

μ2ε2
sin2 θi

)∣∣∣∣
θi > θc

= ây T b
⊥E0 exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]
exp

(
−β2z

√
μ1ε1

μ2ε2
sin2 θi − 1

)∣∣∣∣
θi > θc

= ây T b
⊥E0 exp

[
−β2z

(√
μ1ε1

μ2ε2
sin2 θi − 1

)]
exp

[
−jβ2x

(√
μ1ε1

μ2ε2
sin θi

)]∣∣∣∣
θi > θc

Et
⊥|θi > θc = ây T b

⊥E0e−αe z e−jβe x (5-43)

where

αe = β2

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣
θi > θc

= ω

√
μ1ε1 sin2 θi − μ2ε2

∣∣∣∣
θi > θc

(5-43a)

βe = β2

√
μ1ε1

μ2ε2
sin θi

∣∣∣∣
θi > θc

= ω
√

μ1ε1 sin θi

∣∣
θi > θc

(5-43b)

vpe = ω

βe
= ω

β2

√
μ1ε1

μ2ε2
sin θi

∣∣∣∣∣∣∣∣
θi >θc

= vp2√
μ1ε1

μ2ε2
sin θi

∣∣∣∣∣∣∣∣
θi >θc

= 1√
μ1ε1 sin θi

< vp2 (5-43c)

The wave associated with (5-43) also propagates parallel to the interface with constant phase
planes that are parallel to the z axis, as shown in Figure 5-6b. The effective phase velocity vpe of
the wave is given by (5-43c), and it is less than vp2 of an ordinary wave in medium 2. The wave
also possesses constant amplitude planes that are parallel to the x axis, as shown in Figure 5-6b.
The effective attenuation constant αe of the wave in the z direction is that given by (5-43a).
Its values are such that the wave decays very rapidly, and in a few wavelengths it essentially
vanishes. This wave is also a surface wave. Since its phase velocity is less than the speed of
light, it is a slow surface wave. Also since it decays very rapidly in a direction normal to the
interface, it is tightly bound to the surface—i.e., it is a tightly bound slow surface wave.

Phase velocities greater than the intrinsic phase velocity of an ordinary plane wave in a
given medium can be achieved by uniform plane waves at real oblique angles of propagation,
as illustrated in Section 4.2.2C; phase velocities smaller than the intrinsic velocity can only be
achieved by uniform plane waves at complex angles of propagation. Waves traveling at complex
angles are nonuniform plane waves oriented so as to provide small phase velocities or large rates
of change of phase in a given direction. The price for such large rates of change of phase or
small velocities in one direction is associated with large attenuation at perpendicular directions.

Example 5-5

Assume that θi >θc (so the angle of refraction θt = θR + jθX is complex, i.e. θX �= 0). Determine the
real (θR) and imaginary (θX ) parts of θt in terms of the constitutive parameters of the two media and
the angle of incidence.

Solution: Using (5-42a)

sin θt = sin(θR + jθX ) =
√

μ1ε1

μ2ε2
sin θi
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or

sin(θR) cosh(θX ) + j cos(θR) sinh(θX ) =
√

μ1ε1

μ2ε2
sin θi

Since the right side is real, then the only solution that exists is for the imaginary part of the left side to
vanish and the real part to be equal to the real part of the right side. Thus

cos(θR) sinh(θX ) = 0 ⇒ θR = π

2

sin(θR) cosh(θX ) =
√

μ1ε1

μ2ε2
sin θi ⇒ θX = cosh−1

(√
μ1ε1

μ2ε2
sin θi

)
In turn cos θt is defined as

cos θt = cos(θR + jθX ) = cos(θR) cosh(θX ) − j sin(θR) sinh(θX )

or
cos θt = −j sinh(θX )

which again is shown to be complex as was in (5-42b). When these expressions for sin θt and cos θt are
used to represent the fields in medium 2, it will be shown that the fields are nonuniform plane waves
as illustrated by (5-43).

Under the conditions where the angle of incidence is equal to or greater than the critical angle,
the reflection �b

⊥ and transmission T b
⊥ coefficients of (5-17a) and (5-17b) reduce, respectively, to

[3]

�b
⊥|θi ≥θc =

√
μ2

ε2
cos θi −

√
μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

∣∣∣∣∣∣∣∣
θi ≥θc

=

√
μ2

ε2
cos θi −

√
μ1

ε1

√
1 − sin2 θt√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − sin2 θt

∣∣∣∣∣∣∣∣
θi ≥θc

=

√
μ2

ε2
cos θi −

√
μ1

ε1

√
1 − μ1ε1

μ2ε2
sin2 θi√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − μ1ε1

μ2ε2
sin2 θi

∣∣∣∣∣∣∣∣
θi ≥θc

=

√
μ2

ε2
cos θi + j

√
μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1√

μ2

ε2
cos θi − j

√
μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣∣∣∣∣
θi ≥θc

�b
⊥|θi ≥θc = |�b

⊥|ej 2ψ⊥ = ej 2ψ⊥ (5-44)

where

|�b
⊥| = 1 (5-44a)
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ψ⊥ = tan−1

[
X⊥
R⊥

]
(5-44b)

X⊥ =
√

μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1 (5-44c)

R⊥ =
√

μ2

ε2
cos θi (5-44d)

T b
⊥|θi ≥θc =

2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

∣∣∣∣∣∣∣∣
θi ≥θc

=
2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − sin2 θt

∣∣∣∣∣∣∣∣
θi ≥θc

=
2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi +

√
μ1

ε1

√
1 − μ1ε1

μ2ε2
sin2 θi

∣∣∣∣∣∣∣∣
θi ≥θc

=
2
√

μ2

ε2
cos θi√

μ2

ε2
cos θi − j

√
μ1

ε1

√
μ1ε1

μ2ε2
sin2 θi − 1

∣∣∣∣∣∣∣∣
θi ≥θc

T b
⊥|θi ≥θc = |T b

⊥|ejψ⊥ (5-45)

where

|T b
⊥| = 2R⊥√

R2
⊥ + X 2

⊥
(5-45a)

In addition, the transmitted average power density can now be written, using (5-12a) through
(5-12b) and the modified forms (5-43) through (5-43b) for the fields when the incidence angle is
equal to or greater than the critical angle, as

St
av|θi ≥θc = 1

2
Re(Et × Ht∗)θi ≥θc

= 1

2
Re

[(
ây T b

⊥E0e−αe z e−jβe x
)×(−âx cos θt +âz sin θt )

∗ (T b
⊥)∗E ∗

0

η2
e−αe z e+jβe x

]
θi ≥θc

= 1

2
Re

{[
âz (cos θt )

∗ + âx (sin θt )
∗] |T b

⊥|2|E0|2
η2

e−2αe z

}
θi ≥θc

St
av|θi ≥θc = 1

2
Re

{[
âz

(√
1 − sin2 θt

)∗
+ âx (sin θt )

∗
] |T b

⊥|2|E0|2
η2

e−2αe z

}
θi ≥θc
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St
av|θi ≥θc = 1

2
Re

{[
âz

(√
1 − μ1ε1

μ2ε2
sin2 θi

)∗

+âx

(√
μ1ε1

μ2ε2
sin θi

)∗] |T b
⊥|2|E0|2

η2
e−2αe z

}
θi ≥θc

= 1

2
Re

{[
âz

(
−j

√
μ1ε1

μ2ε2
sin2 θi − 1

)
+âx

(√
μ1ε1

μ2ε2
sin θi

)] |T b
⊥|2|E0|2

η2
e−2αe z

}
θi ≥θc

St
av|θi ≥θc = âx

√
μ1ε1

μ2ε2
sin θi

|T b
⊥|2|E0|2

2η2
e−2αe z

∣∣∣∣
θi ≥θc

(5-46)

Again, from (5-46), it is apparent that there is no real power transfer across the interface in
a direction normal to the boundary. Therefore all the power must be reflected into medium 1.
This can also be verified by formulating and examining the incident and reflected average power
densities. Doing this, using the fields (5-10a) through (5-11b) where the reflection coefficient is
that of (5-44), shows that the magnitudes of the incident and reflected average power densities
are those of (5-41a) and (5-41b), which are identical.

The propagation of a wave from a medium with higher density to one with lower density
(ε2 < ε1 when μ1 = μ2) under oblique incidence can be summarized as follows.

1. When the angle of incidence is smaller than the critical angle (θi < θc = sin−1(
√

ε2/ε1)),
a wave is transmitted into medium 2 at an angle θt , which is greater than the incident angle
θi . Real power is transferred into medium 2, and it is directed along angle θt as shown in
Figure 5-7a .

2. As the angle of incidence increases and reaches the critical angle θi = θc = sin−1(
√

ε2/ε1),
the refracted angle θt , which varies more rapidly than the incident angle θi , approaches
90◦. Although a wave into medium 2 exists under this condition (which is necessary to
satisfy the boundary conditions), the fields form a surface wave that is directed along the
x axis (which is parallel to the interface). There is no real power transfer normal to the
boundary into medium 2, and all the power is reflected in medium 1 along reflected angle
θr as shown in Figure 5-7b. The constant phase planes are parallel to the z axis.

3. When the incident angle θi exceeds the critical angle θc[θi > θc = sin−1(
√

ε2/ε1)], a wave
into medium 2 still exists, which travels along the x axis (which is parallel to the interface)
and is heavily attenuated in the z direction (which is normal to the interface). There is no
real power transfer normal to the boundary into medium 2, and all power is reflected into
medium 1 along reflection angle θr , as shown in Figure 5-7c. Although there is no power
transferred into medium 2, a wave exists there that is necessary to satisfy the boundary
conditions on the continuity of the tangential components of the electric and magnetic fields.
The wave in medium 2 travels parallel to the interface with a phase velocity that is less
than that of an ordinary wave in the same medium [as given by (5-43c)], and it is rapidly
attenuated in a direction normal to the interface with an effective attenuation constant given
by (5-43a). This wave is tightly bound to the surface, and it is referred to as a tightly bound
slow surface wave.

The critical angle is used to design many practical instruments and transmission lines, such as
binoculars, dielectric covered ground plane (surface wave) transmission lines, fiber optic cables,
etc. To see how the critical angle may be utilized, let us consider an example.
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Figure 5-7 Critical angle wave propagation along an interface.
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Example 5-6

Determine the range of values of the dielectric constant of a dielectric slab of thickness t so that, when
a wave is incident on it from one of its ends at an oblique angle 0◦ ≤ θi ≤ 90◦, the energy of the wave
in the dielectric is contained within the slab. The geometry of the problem is shown in the Figure 5-8.

Solution: We assume that the slab width is infinite (two-dimensional geometry). To contain the
energy of the wave within the slab, the reflection angle θr of the wave bouncing within the slab must
be equal to or greater than the critical angle θc . By referring to Figure 5-8, the critical angle can be
related to the refraction angle θt by

sin θr = sin
(π

2
− θt

)
= cos θt ≥ sin θc =

√
ε0

εrε0
= 1√

εr

or
cos θt ≥ 1√

εr

At the interface formed at the leading edge, Snell’s law of refraction must be satisfied. That is,

β0 sin θi = β1 sin θt ⇒ sin θt = β0

β1
sin θi = 1√

εr
sin θi

Using this, we can write the aforementioned cos θt as

cos θt =
√

1 − sin2 θt =
√

1 − 1

εr
sin2 θi ≥ 1√

εr

or √
1 − 1

εr
sin2 θi ≥ 1√

εr

Solving this leads to
εr − sin2 θi ≥ 1

or
εr ≥ 1 + sin2 θi

To accommodate all possible angles, the dielectric constant must be

εr ≥ 2

since the smallest and largest values of θi , are, respectively, 0◦ and 90◦. This is achievable by many
practical dielectric materials such as Teflon (εr � 2.1), polystyrene (εr � 2.56), and many others.

er, e0e0

t
qi

qt
qr

Figure 5-8 Dielectric slab of thickness t and wave containment within.
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B. Parallel (Vertical) Polarization The procedure used to derive the critical angle and to
examine the properties for perpendicular (horizontal) polarization can be repeated for parallel
(vertical) polarization. However, it can be shown that the critical angle is not a function of
polarization, and that it exists for both parallel and perpendicular polarizations. The only limitation
of the critical angle is that the wave propagation be to a less dense medium (μ2ε2 < μ1ε1 or
ε2 < ε1 when μ1 = μ2).

The expression for the critical angle for parallel polarization is the same as that for perpendic-
ular polarization as given by (5-35b) or (5-36). In addition, the wave propagation phenomena that
occur for perpendicular polarization when the incidence angle is less than, equal to, or greater
than the critical angle are also identical to those for parallel polarization. Although the formulas
for the reflection and transmission coefficients, �b

|| and T b
|| respectively, and transmitted average

power density St
|| for parallel polarization are not identical to those of perpendicular polarization

as given by (5-44) through (5-46), the principles stated previously are identical here. The deriva-
tion of the specific formulas for the parallel polarization for critical angle propagation are left as
an end-of-chapter exercise for the reader.

5.4 LOSSY MEDIA

In the previous sections we examined wave reflection and transmission under normal and oblique
wave incidence when both media forming the interface are lossless. Let us now examine the
reflection and transmission of waves under normal and oblique incidence when either one or both
media are lossy [4]. Although in some cases the formulas will be the same as for the lossless
cases, there are differences, especially under oblique wave incidence.

5.4.1 Normal Incidence: Conductor–Conductor Interface

When a uniform plane wave is normally incident upon a planar interface formed by two lossy
media (as shown in Figure 5-1 but allowing for losses in both media through the conductivity σ ),
the incident, reflected, and transmitted fields, reflection and transmission coefficients, and average
power densities are identical to (5-1a) through (5-6c) except that (a) an attenuation constant must
be included in each field and (b) the intrinsic impedances, and attenuation and phases constants
must be modified to include the conductivities of the media. Thus we can summarize the results
here as

Ei = âx E0e−α1z e−jβ1z (5-47a)

Hi = ây
E0

η1
e−α1z e−jβ1z (5-47b)

Er = âx�
bE0e+α1z e+jβ1z (5-48a)

Hr = −ây
�bE0

η1
e+α1z e+jβ1z (5-48b)

Et = âx T bE0e−α2z e−jβ2z (5-49a)

Ht = ây
T bE0

η2
e−α2z e−jβ2z (5-49b)

�b = η2 − η1

η2 + η1
(5-50a)
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T b = 2η2

η2 + η1
(5-50b)

Si
av = âz

|E0|2
2

e−2α1z Re

(
1

η∗
1

)
(5-51a)

Sr
av = −âz |�b |2 |E0|2

2
e+2α1z Re

(
1

η∗
1

)
(5-51b)

St
av = âz |T b |2 |E0|2

2
e−2α2z Re

(
1

η∗
2

)
(5-51c)

For each lossy medium the attenuation constants αi , phase constants βi , and intrinsic impedances
ηi are related to the corresponding constitutive parameters εi , μi , and σi , by the expressions in
Table 4-1.

The total electric and magnetic fields in medium 1 can be written as

E1 = Ei + Er = âx E0e−α1z e−jβ1z︸ ︷︷ ︸
traveling wave

(1 + �be+2α1z e+j 2β1z )︸ ︷︷ ︸
standing wave

(5-52a)

H1 = Hi + Hr = ây (E0/η1)e
−α1z e−jβ1z︸ ︷︷ ︸

traveling wave

(1 − �be+2α1z e+j 2β1z )︸ ︷︷ ︸
standing wave

(5-52b)

In each field the factors outside the parentheses form the traveling wave part of the total wave;
those within the parentheses form the standing wave part .

Example 5-7

A uniform plane wave, whose incident electric field has an x component with an amplitude at the
interface of 10−3 V/m, is traveling in a free-space medium and is normally incident upon a lossy flat
earth as shown in Figure 5-9. Assuming that the constitutive parameters of the earth are ε2 = 9ε0,
μ2 = μ0 and σ2 = 10−1 S/m, determine the variation of the conduction current density in the earth at a
frequency of 1 MHz.

Solution: At f = 106 Hz

σ2

ωε2
= 10−1

2π × 106(9 × 10−9/36π)
= 2 × 102 � 1

which classifies the material as a very good conductor.
On either side of the interface, the total electric field is equal to

Etotal|z=0 = âx × 10−3|1 + �b |
where

�b = η2 − η1

η2 + η1
= η2 − η0

η2 + η0

η2 �
√

ωμ

2σ
(1 + j ) =

√
2π × 106(4π × 10−7)

2 × 10−1
(1 + j ) = 2π(1 + j )
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J  = J0e−z/d

Figure 5-9 Electric and magnetic field intensities, and electric current density distributions in a lossy
earth.

Thus

�b = 2π(1 + j ) − 377

2π(1 + j ) + 377
= −370.72 + j 2π

383.28 + j 2π

= 370.77
/

179.04◦

383.33
/

0.94◦ = 0.967
/

178.1◦

and

Etotal|z=0 = âx × 10−3|1 + 0.967
/

178.1◦|
= âx × 10−3|0.0335 + j 0.0321| = âx (4.64 × 10−5)

The conduction current density at the surface of the earth is equal to

Jc |z=0 = âx J0 = âx σE total|z=0 = âx × 10−1(4.64 × 10−5)

= âx (4.64 × 10−6)
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or
J0 = 4.64 μA/m2

The magnitude of the current density varies inside the earth as

|Jc | = J0|e−α2z e−jβ2z | = J0e−α2z = J0e−z/δ2

where

δ2 = skin depth =
√

2

ωμ2σ2
=

√
2

2π × 106(4π × 10−7) × 10−1

= 10

2π
= 1.5915 m

The magnitude variations of the current density inside the earth are shown in Figure 5-9 and they exhibit
an exponential decay. At one skin depth (z = δ2 = 1.5915 m), the current density has been reduced to

|Jc |z=δ2 = J0e−1 = 0.3679J0 = 0.3679(4.64 × 10−6) = 1.707 μA/m2

Therefore, at one skin depth the current is reduced to 36.79% of its value at the surface.
If the area under the current density curve is found, it is shown to be equal to

Js =
∫ ∞

0
|Jc |dz =

∫ ∞

0
J0e−z/δ2 dz = −δ2J0e−z/δ2

∣∣∞
0 = δ2J0

The same answer can be obtained by assuming that the current density maintains a constant surface
value J0 to a depth equal to the skin depth and equal to zero thereafter, as shown by the dashed curve
in Figure 5-9.

The area under the curve can then be interpreted as the total current density Js (A/m) per unit width
in the y direction. It can be obtained by finding the area formed by maintaining constant surface current
density J0 (A/m2) through a depth equal to the skin depth.

5.4.2 Oblique Incidence: Dielectric–Conductor Interface

Let us assume that a uniform plane wave is obliquely incident upon a planar interface where
medium 1 is a perfect dielectric and medium 2 is lossy, as shown in Figure 5-10 [3]. For either
the perpendicular or parallel polarization, the transmitted electric field into medium 2 can be
written, using modified forms of either (5-12a) or (5-22a), as

Et = E2 exp
[−γ2(x sin θt + z cos θt )

] = E2 exp
[−(α2 + jβ2)(x sin θt + z cos θt )

]
(5-53)

It can be shown that for lossy media, Snell’s law of refraction can be written as

γ1 sin θi = γ2 sin θt (5-54)

Therefore, for the geometry of Figure 5-10,

sin θt = γ1

γ2
sin θi = jβ1

α2 + jβ2
sin θi (5-55a)

and

cos θt =
√

1 − sin2 θt =
√

1 −
(

jβ1

α2 + jβ2

)2

sin2 θi = sejζ = s(cos ζ + j sin ζ ) (5-55b)
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e1, m1 e2, m2, s2

y2 = x2
α2e
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zy

Constant phase planes

qi

qr
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ny = β2e

Figure 5-10 Oblique wave incidence upon a dielectric–conductor interface.

Using (5-55a) and (5-55b) we can write (5-53) as

Et = E2 exp

{
−(α2 + jβ2)

[
x

jβ1

α2 + jβ2
sin θi + zs(cos ζ + j sin ζ )

]}
(5-56)

which reduces to

Et = E2 exp [−zs(α2 cos ζ − β2 sin ζ )]

× exp {−j [β1x sin θ1 + zs(α2 sin ζ + β2 cos ζ )]}
Et = E2e−zp exp

[−j (β1x sin θi + zq)
]

(5-57)

where

p = s(α2 cos ζ − β2 sin ζ ) = α2e (5-57a)

q = s(α2 sin ζ + β2 cos ζ ) (5-57b)

It is apparent that (5-57) represents a nonuniform wave.
The instantaneous field of (5-57) can be written, assuming E2 is real, as

�t = Re(Et ejωt ) = E2e−zpRe
(
exp

{
j
[
ωt − (β1x sin θi + zq)

]})
�t = E2e−zp cos

[
ωt − (β1x sin θi + zq)

]
(5-58)

The constant amplitude planes (z = constant) of (5-58) are parallel to the interface, and they are
shown dashed-dotted in Figure 5-10. The constant phase planes

[
ωt − (kx sin θi + zq) = constant

]
are inclined at an angle ψ2 that is no longer θt , and they are indicated by the dashed lines in
Figure 5-10.
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To determine the constant phase we write the argument of the exponential or of the cosine
function in (5-58) as

ωt − (β1x sin θi + zq) = ωt −
√

(β1 sin θi )2 + q2

×
[

(β1 sin θi )x√
(β1 sin θi )2 + q2

+ qz√
(β1 sin θi )2 + q2

]
(5-59)

If we define an angle ψ2 such that

u = β1 sin θi (5-60a)

sin ψ2 = β1 sin θi√
(β1 sin θi )2 + q2

= u√
u2 + q2

(5-60b)

cos ψ2 = q√
(β1 sin θi )2 + q2

= q√
u2 + q2

(5-60c)

or

ψ2 = tan−1

(
β1 sin θi

q

)
= tan−1

(
u

q

)
(5-60d)

we can write (5-59), and in turn (5-58), as

�t = E2e−zpRe

(
exp

{
j

[
ωt −

√
u2 + q2

(
ux√

u2 + q2
+ qz√

u2 + q2

)]})
= E2e−zpRe (exp {j [ωt − β2e(x sin ψ2 + z cos ψ2)]})

�t = E2e−zpRe
(
exp

{
j
[
ωt − β2e(n̂ψ • r)

]})
(5-61)

where

n̂ψ = âx sin ψ2 + âz cos ψ2 (5-61a)

β2e =
√

u2 + q2 (5-61b)

It is apparent from (5-60a) through (5-61a) that

1. The true angle of refraction is ψ2 and not θt (θt is complex).
2. The wave travels along a direction defined by unit vector n̂ψ .
3. The constant phase planes are perpendicular to unit vector n̂ψ , and they are shown as

dashed lines in Figure 5-10.

The phase velocity of the wave in medium 2 is obtained by setting the exponent of (5-61) to
a constant and differentiating it with respect to time. Doing this, we can write the phase velocity
vp of the wave as

ω(1) −
√

u2 + q2

(
n̂ψ •

dr
dt

)
= 0

ω(1) −
√

u2 + q2

(
n̂ψ •

dr
dt

)
= ω − β2e(n̂ψ • vp) = 0 (5-62)

or
vpr = ω

β2e
= ω√

u2 + q2
= ω√

(β1 sin θi )2 + q2
(5-62a)

It is evident that the phase velocity is a function of the incidence angle θi and the constitutive
parameters of the two media.
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Example 5-8

A plane wave of either perpendicular or parallel polarization traveling in air is obliquely incident upon
a planar interface of copper (σ = 5.76 × 107 S/m). At a frequency of 10 GHz, determine the angle of
refraction and reflection coefficients for each of the two polarizations.

Solution: For copper

σ2

ωε2
= 5.8 × 107(36π)

(2π × 1010) × 10−9
= 1.037 × 108 � 1

Therefore according to Table 4-1

α2 � β2 �
√

ωμ2σ2

2

Using (5-55a)

sin θt = jβ1

α2 + jβ2
sin θi � jβ1√

ωμ2σ2

2
(1 + j )

sin θt
σ2�1� 0 ⇒ θi � 0

Therefore (5-55b), (5-57a), and (5-57b) reduce to

cos θt = 1 = sejζ ⇒ s = 1 ζ = 0

p = s(α2 cos ζ − β2 sin ζ ) � α2 =
√

ωμ2σ2

2

q = s(α2 sin ζ + β2 cos ζ ) � β2 =
√

ωμ2σ2

2

Using (5-60d), the true angle of refraction is

ψ2 = tan−1
(

u

q

)
� tan−1

(
β1 sin θi

β2

)
= tan−1

⎛⎜⎜⎝ ω
√

μ0ε0√
ωμ0σ2

2

sin θi

⎞⎟⎟⎠
= tan−1

(√
2ωε0

σ2
sin θi

)
≤ tan−1

(√
2ωε0

σ2

)
= tan−1(0.139 × 10−3)

ψ2 = tan−1(0.139 × 10−3 sin θi ) ≤ 0.139 × 10−3 rad = (7.96 × 10−3)◦

Using (5-17a) and (5-24c), the reflection coefficients for perpendicular and parallel polarizations reduce
to

�b
⊥ = η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
� η2 cos θi − η1

η2 cos θi + η1
= cos θi − η1/η2

cos θi + η1/η2

�b
|| = −η1 cos θi + η2 cos θt

η1 cos θi + η2 cos θt
� −η1 cos θi + η2

η1 cos θi + η2
= − cos θi + η2/η1

cos θi + η2/η1

Since

η1

η2
=

√
μ1

ε1√
jωμ2

σ2 + jωε2

�

√
μ0

ε0√
jωμ0

σ2

=
√

σ2

jωε0
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η1

η2
� 1.02 × 104e−jπ/4 � 1 ≥ cos θi

Then

�b
⊥ � cos θi − η1/η2

cos θi + η1/η2
� −1

�b
|| � − cos θi + η2/η1

cos θi + η2/η1
� −1

Thus for a very good conductor, such as copper, the angle of refraction approaches zero and the
magnitude of the reflection coefficients for perpendicular and parallel polarizations approach unity, and
they are all essentially independent of the angle of incidence. The same will be true for all other good
conductors.

5.4.3 Oblique Incidence: Conductor–Conductor Interface

In Section 5.3.4 it was shown that when a uniform plane wave is incident upon a
dielectric–dielectric planar interface at an incidence angle θi equal to or greater than the critical
angle θc , the transmitted wave produced into medium 2 is a nonuniform plane wave. For
this plane wave, the constant amplitude planes (which are perpendicular to the α2e vector) of
Figure 5-7 are perpendicular to the constant phase planes (which are perpendicular to the β2e

vector), or the angle ξ2 between the α2e and β2e vectors is 90◦.
In Section 5.4.2 it was demonstrated that a uniform plane wave traveling in a lossless medium

and obliquely incident upon a lossy medium also produces a nonuniform plane wave where the
angle ξ2 between the α2e and β2e vectors in Figure 5-10 is greater than 0◦ but less than 90◦.
In fact, for a very good conductor the angle ξ2 between α2e and β2e is almost zero [for copper
with σ = 5.76 × 107 S/m, ξ2 ≤ (8 × 10−3)◦]. As the conducting medium becomes less lossy, the
angle ξ2 increases and in the limit it approaches 90◦ for a lossless medium. In fact for all lossless
media, the angle between the effective attenuation constant α2e and phase constant β2e should
always be 90◦, with reactive power flowing along α2e and positive real power along β2e [4]. This
is necessary since there are no real losses associated with the wave propagation along β2e . This
was well illustrated in Section 5.3.4 for the nonuniform wave produced in a lossless medium
when the incidence angle was equal to or greater than the critical angle.

It is very interesting to investigate the field characteristics of uniform or nonuniform plane
waves that are obliquely incident upon interfaces comprised of lossy–lossy interfaces. These types
of waves have been examined [5–6], but, because of the general complexity of the formulations,
they will not be repeated here. The reader is referred to the literature. An excellent discussion
of uniform and nonuniform plane waves propagating in lossless and lossy media and associated
interfaces is found in Chapters 7 and 8 of [4].

5.5 REFLECTION AND TRANSMISSION OF MULTIPLE INTERFACES

Many applications require dielectric interfaces that exhibit specific characteristics as a function
of frequency. Accomplishing this often requires multiple interfaces. The objective of this section
is to analyze the characteristics of multiple layer interfaces. To reduce the complexity of the
problem, we will consider only normal incidence and restrict most of our attention to lossless
media. A general formulation for lossy media will also be stated.
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5.5.1 Reflection Coefficient of a Single Slab Layer

Section 5.2 showed that for normal incidence the reflection coefficient �b at the boundary of a
single planar interface is given by (5-4a) or

�b = η2 − η1

η2 + η1
(5-63)

and at a distance z = −� from the boundary it is given by (5-5a) or

�in(z = −�) = �be−j 2β1� (5-64)

Just to the right of the boundary the input impedance in the +z direction is equal to the
intrinsic impedance η2 of medium 2, that is,

Zin(z = 0+) = η2 =
√

μ2

ε2
(5-65)

The input impedance at z = −� can be found by using the field expressions (5-1a) through (5-2c).
By definition Zin(z = −�) is equal to

Zin|z=−� = E total|z=−�

H total|z=−�

(5-66)

where

E total|z=−� = (E i + E r )|z=−� = E0e+jβ1�(1 + �be−j 2β1�) = E0e+jβ1� [1 + �in(�)]

(5-66a)

H total|z=−� = (H i − H r )|z=−� = E0

η1
e+jβ1�(1 − �be−j 2β1�) = E0

η1
e+jβ1� [1 − �in(�)]

(5-66b)

Therefore

Zin|z=−� = η1

(
1 + �be−j 2β1�

1 − �be−jβ1�

)
= η1

(
1 + �in(�)

1 − �in(�)

)
(5-66c)

which by using (5-63) can also be written as

Zin|z=−� = η1

(
1 + �be−j 2β1�

1 − �be−j 2β1�

)
= η1

(
1 + �in(�)

1 − �in(�)

)
= η1

(
η2 + jη1 tan(β1�)

η1 + jη2 tan(β1�)

)
(5-66d)

Equation 5-66d is analogous to the well-known impedance transfer equation that is widely used
in transmission line theory [7].

Using the foregoing procedure for normal wave incidence, we can derive expressions for
multiple layer interfaces [8]. Referring to Figure 5-11a the input impedance at z = 0+ is equal
to the intrinsic impedance η3 of medium 3, that is

Zin(z = 0+) = η3 (5-67)

In turn, the input reflection coefficient at the same interface can be written as

�in(z = 0−) = Zin(0+) − η2

Zin(0+) + η2
= η3 − η2

η3 + η2
(5-67a)
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Figure 5-11 Impedances and reflection and transmission coefficients for wave propagation in dielectric
slab. (a) Dielectric slab. (b) Reflection and transmission coefficients.
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At z = −d+ the input impedance can be written using (5-66d) as

Zin(z = −d+) = η2

(
1 + �in(z = 0−)e−j 2β2d

1 − �in(z = 0−)e−j 2β2d

)
= η2

(
(η3 + η2) + (η3 − η2)e−j 2β2d

(η3 + η2) − (η3 − η2)e−j 2β2d

)
(5-67b)

and the input reflection coefficient at z = −d− can be expressed as

�in(z = −d−) = Zin(z = −d+) − η1

Zin(z = −d+) + η1

= η2
[
(η3 + η2) + (η3 − η2)e−j 2β2d

] − η1
[
(η3 + η2) − (η3 − η2)e−j 2β2d

]
η2

[
(η3 + η2) + (η3 − η2)e−j 2β2d

] + η1
[
(η3 + η2) − (η3 − η2)e−j 2β2d

]
(5-67c)

In Figure 5-11a we have defined individual reflection coefficients at each of the boundaries.
Here these coefficients are referred to as intrinsic reflection coefficients, and they would exist at
each boundary if two semi-infinite media form each of the boundaries (neglecting the presence
of the other boundaries). Using the intrinsic reflection coefficients defined in Figure 5-11a , the
input reflection coefficient of (5-67c) can also be written as

�in(z = −d−) = �12 + �23e−j 2β2d

1 + �12�23e−j 2β2d
(5-67d)

Equation 5-67d can also be derived using the ray-tracing model of Figure 5-11b. At the leading
interface of Figure 5-11b, �12 represents the intrinsic reflection coefficient of the initial reflection
and T12�23T21e−j 2θ , etc., are the contributions to the input reflection due to the multiple bounces
within the medium 2 slab. The total input reflection coefficient can be written as a geometric
series that takes the form

�in(z = −d−) = �12 + T12�23T21e−j 2θ + T12�21�
2
23T21e−j 4θ + . . .

�in(z = −d−) = �12 + T12�23T21e−j 2θ [1 + �21�23e−j 2θ + (�21�23e−j 2θ )2 + . . .]

�in(z = −d−) = �12 + T12T21�23e−j 2θ

1 − �21�23e−j 2θ
(5-68)

where
θ = β2d (5-68a)

Since according to (5-4a) and (5-4b)

�21 = −�12 (5-69a)

T12 = 1 + �21 = 1 − �12 (5-69b)

T21 = 1 + �12 (5-69c)

(5-68) can be rewritten and reduced to the form of (5-67d).
If the magnitudes of the intrinsic reflection coefficients |�12| and |�23| are low compared to

unity, (5-67d) can be approximated by the numerator

�in(z = −d−) = �12 + �23e−j 2β2d

1 + �12�23e−j 2β2d

|�12|�1�
|�23|�1

�12 + �23e−j 2β2d (5-70)
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The approximate form of (5-70) yields good results if the individual intrinsic reflection coefficients
are low. Typically when |�12| = |�23| ≤ 0.2, the error of the approximate form of (5-70) is
equal to or less than about 4 percent. The approximate form of (5-70) will be very convenient
for representing the input reflection coefficient of multiple interfaces (> 2) when the individual
intrinsic reflection coefficients at each interface are low compared to unity.

Example 5-9

A uniform plane wave at a frequency of 10 GHz is incident normally on a dielectric slab of thickness
d and bounded on both sides by air. Assume that the dielectric constant of the slab is 2.56.

1. Determine the thickness of the slab so that the input reflection coefficient at 10 GHz is zero.
2. Plot the magnitude of the reflection coefficient as a function of frequency between

5 GHz ≤ f ≤ 15 GHz when the dielectric slab has a thickness of 0.9375 cm.

Solution:

1. For the input reflection coefficient to be equal to zero, the reflection coefficient of (5-70) must be
set equal to zero. This can be accomplished if

|�12 + �23e−j 2β2d | = 0

Since
�23 = −�12 = η1 − η2

η1 + η2

then
|�12||1 − e−j 2β2d | = 0 ⇒ 2β2d = 2nπ n = 0, 1, 2, . . .

For nontrivial solutions, the thickness must be

d = nπ

β2
= η

2
λ2 n = 1, 2, 3, . . .

where λ2 is the wavelength inside the dielectric slab. Thus the thickness of the slab must be an
integral number of half wavelengths inside the dielectric. At a frequency of 10 GHz and a dielectric
constant of 2.56, the wavelength inside the dielectric is

λ2 = 30 × 109

10 × 109
√

2.56
= 1.875 cm

2. At a frequency of 5 GHz, the dielectric slab of thickness 0.9375 cm is equal to

d = 0.9375
√

2.56λ2

30 × 109/5 × 109
= 0.25λ2 ⇒ 2β2d = 4π

λ2

(
λ2

4

)
= π

and at 15 GHz it is equal to

d = 0.9375
√

2.56λ2

30 × 109/15 × 109
= 0.75λ2 ⇒ 2β2d = 4π

λ2

(
3λ2

4

)
= 3π

Since

�12 = −�23 = η2 − η1

η2 + η1
= η2/η1 − 1

η2/η1 + 1
= 1 − √

εr

1 + √
εr

= −0.6

2.6
= −0.231
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the input reflection coefficient of (5-70), at f = 5 and 15 GHz, achieves the maximum magnitude
of

|�in(z = −d−)| =
∣∣∣∣ −0.231 − 0.231

1 − (−0.231)(0.231)

∣∣∣∣ = 2(0.231)

1 + (0.231)2
= 0.438

A complete plot of |�in(z = −d−)| for 5 GHz ≤ f ≤ 15 GHz is shown in the Figure 5-12.
Using the approximate form of (5-70), the magnitude of the input reflection coefficient is equal

to
|�in(z = −d−)| f =5,

15 GHz
� | − 0.231 − (0.231)| = 0.462

The percent error of this is

percent error =
(−0.438 + 0.462

0.438

)
× 100 = 5.48
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Figure 5-12 Input reflection coefficient, as a function of frequency, for wave propagation through a
dielectric slab.

Example 5-10

A uniform plane wave is incident normally upon a dielectric slab whose thickness at f0 = 10 GHz is
λ20/4 where λ20 is the wavelength in the dielectric slab. The slab is bounded on the left side by air and
on the right side by a semi-infinite medium of dielectric constant εr3 = 4.

1. Determine the intrinsic impedance η2 and dielectric constant εr2 of the sandwiched slab so that
the input reflection coefficient at f0 = 10 GHz is zero.

2. Plot the magnitude response of the input reflection coefficient for 0 ≤ f ≤ 20 GHz when the
intrinsic impedance and physical thickness of the slab are those found in part 1.

3. Using the ray-tracing model of Figure 5-11b, at f0 = 10 GHz determine the first and next two
higher-order terms that contribute to the overall input reflection coefficient. What is the input
reflection coefficient using these three terms?

Solution:

1. In order for the input reflection coefficient to vanish, the magnitude of (5-70) must be equal to
zero, that is

|�12 + �23e−j 2β2d | = 0
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Since at f0 = 10 GHz, d = λ20/4, then

2β2d |f =10 GHz = 2

(
2π

λ20

)(
λ20

4

)
= π

Also
�12 = η2 − η1

η2 + η1

and
�23 = η3 − η2

η3 + η2

Thus ∣∣�12 + �23e−j 2β2d
∣∣d=λ20 /4
f =10 GHz

=
∣∣∣∣η2 − η1

η2 + η1
− η3 − η2

η3 + η2

∣∣∣∣
=

∣∣∣∣ (η2 − η1)(η3 + η2) − (η3 − η2)(η2 + η1)

(η2 + η1)(η3 + η2)

∣∣∣∣ = 0

or
2|η2

2 − η1η3| = 0 ⇒ η2 = √
η1η3

Since η1 =
√

μ0

ε0
= 377 ohms and η3 =

√
μ0

4ε0
= 1

2
η1 = 188.5 ohms then

η2 = √
η1η3 = η1√

2
= 0.707η1 = 0.707(377) = 266.5 ohms

The dielectric constant of the slab must be equal to

εr2 = 2

whereas the physical thickness of the dielectric is

d = λ20

4
= 30 × 109

4(10 × 109)
√

2
= 0.53 cm

It is apparent then that whenever the dielectric is bounded by two semi-infinite media and its
thickness is a quarter of a wavelength in the dielectric, its intrinsic impedance must always be equal
to the square root of the product of the intrinsic impedances of the two media on each of its sides
in order for the input reflection coefficient to vanish. This is referred to as the quarter-wavelength
transformer that is so popular in transmission line design .

2. Since at f0 = 10 GHz, d = λ20/4 = 0.53 cm, then in the frequency range 0 ≤ f ≤ 20 GHz

2β2d = 2

(
2π

λ2

)(
λ20

4

)
= π

(
f

f0

)
also

�12 = η2 − η1

η2 + η1
= η2/η1 − 1

η2/η1 + 1
= 1 − √

2

1 + √
2

�23 = η3 − η2

η3 + η2
= η3/η2 − 1

η3/η2 + 1
= 1 − √

2

1 + √
2

= �12

Therefore, the magnitude of the input reflection coefficient of (5-70) can be written now as

|�in(z = −d−)| =
∣∣∣∣ �12(1 + e−jπ f /f0)

1 + (�12)2e−jπ f /f0

∣∣∣∣
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Figure 5-13 Responses of single-section, two-section binomial, and two-section Tschebyscheff quarter-
wavelength transformers. (Source: C. A. Balanis, Antenna Theory: Analysis and Design , 3rd Edition.
Copyright © 2005, John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

whose maximum value, which occurs when f = 0 and 2f0 = 20 GHz, is approximately equal to

|�in(z = −d−)|max = 2|�12|
(1 + |�12|2) = |�13| =

∣∣∣∣η3 − η1

η3 + η1

∣∣∣∣
= 0.333 � 2|�12| = 0.3431

A complete plot of |�in(z = −d−)|d=λ20 /4 when 0 ≤ f ≤ 20 GHz is shown in the Figure 5-13.
It is interesting to note that the magnitude of the input reflection coefficient monotonically

decreases from f = 0 to f0, and it monotonically increases from f0 to 2f0. It can also be noted that
the bandwidth of the response curve near f0 is very small, and any deviations of the frequency
from f0 will cause the reflection coefficient to rise sharply.

3. According to Figure 5-11b, the first-order term of the input reflection coefficient is

�12 = η2 − η1

η2 + η1
= 266.5 − 377

266.5 + 377
= −0.1717

The next two higher terms are equal to

T12�23T21e−j 2β2d = 2η1

η1 + η2

(
η3 − η2

η3 + η2

)(
2η2

η1 + η2

)
e−jπ

= − 2(377)

377 + 266.5

(
188.5 − 266.5

188.5 + 266.5

)
2(266.5)

377 + 266.5
= +0.1664

T12�21�
2
23T21e−j 4β2d = 2η1

η1 + η2

(
η1 − η2

η1 + η2

)(
η3 − η2

η3 + η2

)2 (
2η2

η1 + η2

)
e−j 2π
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T12�21�
2
23T21e−j 4β2d = 2(337)

377 + 266.5

(
377 − 266.5

377 + 266.5

)(
188.5 − 266.5

188.5 + 266.5

)2 2(266.5)

377 + 266.5

= 0.0049

�in � �12 + T12�23�21e−j 2β2d + T12�21�
2
23T21e−j 4β2d

= −0.1717 + 0.1664 + 0.0049

�in � −4 × 10−4 � 0

Thus, the first three terms, or even the first two terms, provide an excellent approximation to the
exact value of zero.

The bandwidth of the response curve can be increased by flattening the curve near f0. This
can be accomplished by increasing the number of layers bounded between the two semi-infinite
media. The analysis of such a configuration will be discussed in Section 5.5.2.

If the three media of Figure 5-11 are lossy, then it can be shown that the overall reflection
and transmission coefficients can be written as [3]

�in = E r

E i
= (1 − Z12)(1 + Z23) + (1 + Z12)(1 − Z23)e−2γ2d

(1 + Z12)(1 + Z23) + (1 − Z12)(1 − Z23)e−2γ2d
(5-71a)

T = E t

Ei
= 4

(1 − Z12)(1 − Z23)e−γ2d + (1 + Z12)(1 + Z23)eγ2d
(5-71b)

where

Zij = μi γj

μj γi
i , j = 1, 2, 3 (5-71c)

γk = ±
√

jωμk (σk + jωεk ) (5-71d)

The preceding equations are valid for lossless, lossy, or any combination of lossless and lossy
media.

5.5.2 Reflection Coefficient of Multiple Layers

The results of Example 5-10 indicate that for normal wave incidence the response of a single
dielectric layer sandwiched between two semi-infinite media did not exhibit very broad charac-
teristics around the center frequency f0, and its overall response was very sensitive to frequency
changes. The characteristics of such a response are very similar to the bandstop characteristics
of a single section filter or single section quarter-wavelength impedance transformer. To increase
the bandwidth of the system under normal wave incidence, multiple layers of dielectric slabs,
each with different dielectric constant, must be inserted between the two semi-infinite media.
Multiple section dielectric layers can be used to design dielectric filters [9]. Coating radar targets
with multilayer slabs can also be used to reduce or enhance their scattering characteristics.

When N layers, each with its own thickness and constitutive parameters, are sandwiched
between two semi-infinite media as shown in Figure 5-14, the analysis for the overall reflection
and transmission coefficients is quite cumbersome, although it is straightforward. However, an
approximate form of the input reflection coefficient for the entire system under normal wave
incidence can be obtained by utilizing the approximation first introduced to represent (5-70).
With this in mind, the input reflection coefficient under normal wave incidence for the system of
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Figure 5-14 Normal wave propagation through N layers sandwiched between two media.

Figure 5-14, referenced at the boundary of the leading interface, can be written approximately as
[1, 8]

�in � �0 + �1e−j 2β1d1 + �2e−j 2(β1d1+β2d2) + · · · + �N e−j 2(β1d1+β2d2+ ··· +βN dN ) (5-72)

where

�0 = η1 − η0

η1 + η0
(5-72a)

�1 = η2 − η1

η2 + η1
(5-72b)

�2 = η3 − η2

η3 + η2
(5-72c)

...

�N = ηL − ηN

ηL + ηN
(5-72d)

Expression 5-72 is accurate provided that at each boundary the intrinsic reflection coefficients of
(5-72a) through (5-72d) are small in comparison to unity.

A. Quarter-Wavelength Transformer Example 5-10 demonstrated that when a lossless
dielectric slab of thickness λ20/4 at a frequency f0 is sandwiched between two lossless
semi-infinite dielectric media, the input reflection coefficient at f0 is zero provided its intrinsic
impedance η1 is equal to

η1 = √
η0ηL (5-73)

where
η1 = intrinsic impedance of dielectric slab.
η0 = intrinsic impedance of the input semi-infinite medium.
ηL = intrinsic impedance of the load semi-infinite medium.
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However, as was illustrated in Figure 5-13, the response of the input reflection coefficient as a
function of frequency was not very broad near the center frequency f0.

Matchings that are less sensitive to frequency variations and that provide broader bandwidths
require multiple λ/4 sections. In fact the number of sections and the intrinsic impedance of each
section can be designed so that the reflection coefficient follows, within the desired frequency
bandwidth, prescribed variations that are symmetrical about the center frequency. This design
assumes that the semi-infinite media and the dielectric slabs are all lossless so that their intrinsic
impedances are all real. The discussion that follows parallels that of [1] and [8].

Referring to Figure 5-14, the total input reflection coefficient �in for an N-section quarter-
wavelength transformer with ηL > η0 can be written, using an extension of the approximation
used to represent (5-70), as [1, 8]

�in(f ) � �0 + �1e−j 2θ + �2e−j 4θ + . . . + �N e−j 2N θ =
N∑

n=0

�ne−j 2nθ (5-74)

where �n and θ are represented, respectively, by

�n = ηn+1 − ηn

ηn+1 + ηn
(5-74a)

θ = βndn = 2π

λn

(
λn0

4

)
= π

2

(
f

f0

)
(5-74b)

In (5-74) �n represents the reflection coefficient at the junction of two infinite lines that have
intrinsic impedances ηn and ηn+1, f0 represents the designed center frequency, and f represents
the operating frequency. Equation 5-74 is valid provided the �n ’s at each junction are small (the
requirements will be met if ηL � η0). For lossless dielectrics, the ηn ’s and �n ’s will all be real.

For a symmetrical transformer (�0 = �N , �1 = �N −1, etc.), (5-74) reduces to

�in(f ) � 2e−jN θ [�0 cos N θ + �1 cos(N − 2)θ + �2 cos(N − 4)θ + . . .] (5-75)

The last term in (5-75) should be

�[(N −1)/2] cos θ for N = odd integer (5-75a)

1
2�(N /2) for N = event integer (5-75b)

B. Binomial (Maximally Flat) Design One technique, used to design an N -section λ/4
transformer, requires that the input reflection coefficient (5-74) have maximally flat passband
characteristics. For this method, the junction reflection coefficients (�n ’s) are derived using the
binomial expansion and we can equate (5-74) to [1, 8]

�in(f ) �
N∑

n=0

�ne−j 2nθ = e−jN θ ηL − η0

ηL + η0
cosN (θ)

� 2−N ηL − η0

ηL + η0

N∑
n=0

C N
n e−j 2nθ

(5-76)

where

C N
n = N !

(N − n)!n!
n = 0, 1, 2, . . . , N (5-76a)
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From (5-76)

�n = 2−N ηL − η0

ηL + η0
C N

n (5-77)

For this type of design, the fractional bandwidth 	f /f0 is given by

	f

f0
= 2

f0 − fm
f0

= 2

(
1 − fm

f0

)
= 2

(
1 − 2

π
θm

)
(5-78)

Since

θm = 2π

λm

(
λ0

4

)
= π

2

(
fm
f0

)
(5-79)

(5-78) reduces, using (5-76), to

	f

f0
= 2 − 4

π
cos−1

∣∣∣∣ �m

(ηL − η0)/(ηL + η0)

∣∣∣∣1/N

(5-80)

where �m is the magnitude of the maximum value of reflection coefficient that can be tolerated
within the bandwidth.

The usual design procedure is to specify

1. the load intrinsic impedance ηL

2. the input intrinsic impedance η0

3. the number of sections N
4. the maximum tolerable reflection coefficient �m (or fractional bandwidth 	f /f0)

and to find

1. the intrinsic impedance of each section
2. the fractional bandwidth 	f /f0 (or maximum tolerable reflection coefficient �m )

To illustrate the principle, let us consider an example.

Example 5-11

Two lossless dielectric slabs each of thickness λ0/4 at a center frequency f0 = 10 GHz are sandwiched
between air to the left and a lossless semi-infinite medium of dielectric constant εL = 4 to the right.
Assuming a fractional bandwidth of 0.375 and a binomial design:

1. Determine the intrinsic impedances, dielectric constants, and thicknesses of the sandwiched slabs
so that the input reflection coefficient at f0 = 10 GHz is zero.

2. Determine the maximum reflection coefficient and SWR within the fractional bandwidth.
3. Plot the response of the input reflection coefficient for 0 ≤ f ≤ 20 GHz when the intrinsic

impedances and physical thicknesses of the slabs are those found in part 1. Compare the response
of the two-section binomial design with that of the single section of Example 5-10.

Solution:

1. Using (5-76a) and (5-77)

�n = 2−N ηL − η0

ηL + η0
C N

n = 2−N ηL − η0

ηL + η0

N !

(N − n)!n!
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Since the input dielectric is air and the load dielectric has a dielectric constant εL = 4, then

η0 = 377

ηL =
√

μ0

εLε0
= 377

2
= 188.5

Therefore,

n = 0 : �0 = η1 − η0

η1 + η0
= 2−2

(
188.5 − 377

188.5 + 377

)
2!

2!0!
= − 1

12

⇒ η1 = η0

(
1 − 1/12

1 + 1/12

)
= 0.846η0 = 318.94 ohms

⇒ εr1 = 1.40 d1 = λ10

4
= 0.634 cm

n = 1 : �1 = η2 − η1

η2 + η1
= 2−2

(
188.5 − 377

188.5 + 377

)
2!

1!1!
= −1

6

⇒ η2 = η1

(
1 − 1/6

1 + 1/6

)
= 0.714η1 = 227.72 ohms

⇒ εr2 = 2.74 d2 = λ20/4 = 0.453 cm

2. For a fractional bandwidth of 0.375, the magnitude of the maximum reflection coefficient �m is
obtained using (5-80) or

	f

f0
= 0.375 = 2 − 4

π
cos−1

∣∣∣∣ �m

(ηL − η0)/(ηL + η0)

∣∣∣∣1/2

which for ηL = 188.5 and η0 = 377 leads to

�m = 0.028

The maximum standing wave ratio is

SWRm = 1 + �m

1 − �m
= 1 + 0.028

1 − 0.028
= 1.058

3. The magnitude of the input reflection coefficient is given by (5-76) as

|�in| =
∣∣∣∣ηL − η0

ηL + η0

∣∣∣∣ cos2 θ = 1

3
cos2 θ = 1

3
cos2

[
π

2

(
f

f0

)]
which is shown plotted in Figure 5-13 where it is also compared with that of the one- and
two-section Tschebyscheff design to be discussed next.

C. Tschebyscheff (Equal-Ripple) Design The reflection coefficient can be made to vary
within the bandwidth in an oscillatory manner and have equal-ripple characteristics [10–12]. This
can be accomplished by making �in vary similarly as a Tschebyscheff (Chebyshev) polynomial.
For the Tschebyscheff design, the equation that corresponds to (5-76) is [1, 8]

�in(f ) = e−jN θ ηL − η0

ηL + η0

TN (sec θm cos θ)

TN (sec θm)
(5-81)

where TN (z ) is the Tschebyscheff polynomial of order N .
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The maximum allowable reflection coefficient occurs at the edges of the passband where
θ = θm and |TN (sec θm cos θ)|θ=θm = 1. Thus,

ρm =
∣∣∣∣ηL − η0

ηL + η0

1

TN (sec θm)

∣∣∣∣ (5-82)

or

|TN (sec θm)| =
∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣ (5-82a)

Using (5-82), we can write (5-81) as

�in (f ) = e−jN θρmTN (sec θm cos θ) (5-83)

and its magnitude as
|�in (f )| = ρin(f ) = |ρmTN (sec θm cos θ)| (5-83a)

For this type of a design, the fractional bandwidth 	f /fo is also given by (5-78).
To be physical, ρm must be smaller than the reflection coefficient when there are no matching

layers. Therefore, from (5-82),

ρm =
∣∣∣∣ηL − η0

ηL + η0

1

TN (sec θm)

∣∣∣∣ <

∣∣∣∣ηL − η0

ηL + η0

∣∣∣∣ (5-84)

or
|TN (sec θm)|> 1 (5-84a)

The Tschebyscheff polynomial can be expressed by either (6-71a) or (6-71b) of [1], or

Tm(z ) = cos[mcos−1(z )] − 1 ≤ z ≤ +1 (5-85a)

Tm(z ) = cosh[mcosh−1(z )] z < −1, z > +1 (5-85b)

Since |TN (sec θm)| > 1, using (5-85b) we can express TN (sec θm) as

TN (sec θm) = cosh
[
N cosh−1 (sec θm)

]
(5-86)

or by using (5-82a), as

|TN (sec θm)| = ∣∣cosh
[
N cosh−1 (sec θm)

]∣∣ =
∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣ (5-86a)

Thus,

sec θm = cosh

[
1

N
cosh−1

(∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣)]
(5-87)

or

θm = sec−1

{
cosh

[
1

N
cosh−1

(∣∣∣∣ 1

ρm

ηL − η0

ηL + η0

∣∣∣∣)]}
(5-87a)

Using (5-83) we can write the reflection coefficient of (5-75) as

�in (θ) = 2e−jN θ {ρ0 cos (N θ) + ρ1 cos [(N − 2) θ ] + . . .}
= e−jN θρmTN (sec θm cos θ) (5-88)

For a given N , replace TN (sec θm cos θ) in (5-88) by its polynomial series of (6-69) of [1] and
then match terms . This will allow you to determine the intrinsic reflection coefficients ρ ′

ns and
subsequently the η′

ns . The design procedure for the Tschebyscheff design is the same as that of
the binomial design, as outlined previously.
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The first few Tschebyscheff polynomials can be found in [1, 8]. For z = sec θm cos θ , the first
three polynomials reduce to

T1(sec θm cos θ) = sec θm cos θ

T2(sec θm cos θ) = 2(sec θm cos θ)2 − 1 = sec2 θm cos 2θ + (sec2 θm − 1)

T3(sec θm cos θ) = 4(sec θm cos θ)3 − 3(sec θm cos θ)

= sec3 θm cos 3θ + 3(sec3 θm − sec θm) cos θ (5-89)

The remaining details of the analysis are found in [1, 8].
The design of Example 5-11 using a Tschebyscheff transformer is assigned as an exercise to

the reader. However, its response is plotted in Figure 5-13 for comparison.
In general, multiple sections (either binomial or Tschebyscheff) provide greater bandwidths

than a single section. As the number of sections increases, the bandwidth also increases. The
advantage of the binomial design is that the reflection coefficient values within the bandwidth
monotonically decreases from both ends toward the center. Thus the values are always smaller
than an acceptable and designed value that occurs at the “skirts” of the bandwidth. For the
Tschebyscheff design, the reflection coefficient values within the designed bandwidth are equal
to or smaller than an acceptable and designed value. The number of times the reflection coefficient
reaches the maximum value within the bandwidth is determined by the number of sections. In
fact, for an even number of sections the reflection coefficient at the designed center frequency
is equal to the maximum allowable value, whereas for an odd number of sections it is zero. For
a maximum tolerable reflection coefficient, the N -section Tschebyscheff transformer provides a
larger bandwidth than a corresponding N -section binomial design, or for a given bandwidth the
maximum tolerable reflection coefficient is smaller for a Tschebyscheff design.

D. Oblique-Wave Incidence A more general formulation of the reflection and transmission
coefficients can be developed by considering the geometry of Figure 5-15 where a uniform plane
wave is incident at an oblique angle upon N layers of planar slabs that are bordered on either
side by free space. This type of a geometry can be used to approximate the configuration of a
radome whose radius of curvature is large in comparison to the wavelength. It can be shown
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Er, Hr

d1 dNd2 did3

m1

e1

s1

h1

m2

e2

s2
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m3

e3

s3

h3
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ei

si

hi

mN e0, m0

e0, m0

eN
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hN
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q0 

q0 qt

Figure 5-15 Oblique wave propagation through N layers of dielectric slabs.
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that the overall reflection and transmission coefficients for perpendicular (horizontal) and parallel
(vertical) polarizations can be written as [3]

Perpendicular (Horizontal)

�⊥ = E r
⊥

E i
⊥

= B0

A0
(5-90a)

T⊥ = E t
⊥

E i
⊥

= 1

A0
(5-90b)

Parallel (Vertical)

�|| = E r
||

E i
||

= C0

D0
(5-91a)

T|| = E t
||

E i
||

= 1

D0
(5-91b)

The functions A0, B0, C0, and D0 are found using the recursive formulas

Aj = eψj

2
[Aj+1(1 + Yj+1) + Bj+1(1 − Yj+1)] (5-92a)

Bj = e−ψj

2
[Aj+1(1 − Yj+1) + Bj+1(1 + Yj+1)] (5-92b)

Cj = eψj

2
[Cj+1(1 + Zj+1) + Dj+1(1 − Zj+1)] (5-92c)

Dj = e−ψj

2
[Cj+1(1 − Zj+1) + Dj+1(1 + Zj+1)] (5-92d)

where

AN +1 = CN +1 = 1 (5-92e)

BN +1 = DN +1 = 0 (5-92f)

Yj+1 = cos θj+1

cos θj

√
εj+1(1 − j tan δj+1)μj

εj (1 − j tan δj )μj+1
(5-92g)

Zj+1 = cos θj+1

cos θj

√
εj (1 − j tan δj )μj+1

εj+1(1 − j tan δj+1)μj
(5-92h)

ψj = dj γj cos θj (5-92i)

γj = ±√
jωμj (σj + jωεj ) (5-92j)

θj = complex angle of refraction in the j th layer (5-92k)

where d0 is the distance from the leading interface, which serves as the reference for the reflection
and transmission coefficients [see (5-5a) and (5-5b)].

5.6 POLARIZATION CHARACTERISTICS ON REFLECTION

When linearly polarized fields are reflected from smooth flat surfaces, the reflected fields main-
tain their linear polarization characteristics. However, when the reflected surfaces are curved or
rough, a linearly polarized component orthogonal to that of the incident field is introduced during
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reflection. Therefore, the total field exhibits two components: one with the same polarization as
the incident field (main polarization) and one orthogonal to it (cross polarization). During this
process, the field is depolarized due to reflection.

Circularly polarized fields in free space incident upon flat surfaces:

1. Maintain their circular polarization but reverse their sense of rotation when the reflecting
surface is perfectly conducting.

2. Are transformed to elliptically polarized fields of opposite sense of rotation when the flat
surface is a lossless dielectric and the angle of incidence is smaller than the Brewster
angle.

Similarly, elliptically polarized fields in free space upon reflection from flat surfaces

1. Maintain their elliptical polarization and magnitude of axial ratio but reverse their sense of
rotation when reflected from a perfectly conducting surface.

2. Maintain their elliptical polarization but change their axial ratio and sense of rotation when
the reflecting surface is a dielectric and the angle of incidence is smaller than the Brewster
angle.

To analyze the polarization properties of a wave when it is reflected by a surface, let us assume
that an elliptically polarized wave is obliquely incident upon a flat surface of infinite extent as
shown in Figure 5-16 [7]. Using the localized coordinate system (x ′, y , z ′) of Figure 5-16, the
incident electric field components can be written as

Ei
|| = âx ′E i

||e
−jβi • r = âx ′E 0

|| e−jβi • r (5-93a)

Ei
⊥ = ây E i

⊥e−jβi • r = ây E 0
⊥e−j (βi • r−φi

⊥) (5-93b)

where E 0
|| and E 0

⊥ are assumed to be real.
For this set of field components, the Poincaré sphere angles (4-58a) through (4-59b) can be

written [assuming that the ratio in (4-58a), selected here to demonstrate the procedure, satisfies
the angular limits of all the Poincaré sphere angles] as

γ i = tan−1

(
|E 0

⊥|
|E 0

|| |

)

δi = φi
⊥ − φi

|| = φi
⊥

(5-94a)

(5-94b)

εi = cot−1(ARi )

τ i = tilt angle of incident wave

(5-94c)

(5-94d)

where δi is the phase angle by which the perpendicular component of the incident field leads
the parallel component. It is assumed that (ARi ) is positive for left-hand and negative for right-
hand polarized fields. These two sets of angles are related to each other by (4-60a) through
(4-61b), or

cos(2γ i ) = cos(2εi ) cos(2τ i ) (5-95a)

tan(δi ) = tan(2εi )

sin(2τ i )
(5-95b)
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Figure 5-16 Elliptically polarized wave incident on a flat lossy surface.

or

sin(2εi ) = sin(2γ i ) sin(δi ) (5-95c)

tan(2τ i ) = tan(2γ i ) cos(δi ) (5-95d)

In a similar manner, the reflected fields of the elliptically polarized wave can be written
according to the localized coordinate system (x ′′, y , z ′′) of Figure 5-16 as

Er
|| = âx ′′E r

|| e−jβr • r = −âx ′′�b
|| E

0
|| e−jβr • r = âx ′′ |�b

|| |E 0
|| e−j (βr • r−π−ζ r

|| )

= âx ′′ |�b
|| |E 0

|| e−j (βr • r−φr
|| ) (5-96a)

Er
⊥ = ây E r

⊥e−jβr • r = ây�
b
⊥E 0

⊥e−j (βr • r−φi
⊥) = ây |�b

⊥|E 0
⊥e−j (βr • r−δi −ζ r

⊥)

= ây |�b
⊥|E 0

⊥e−j (βr • r−φr
⊥) (5-96b)

where ζ r
|| and ζ r

⊥ are the phases of the reflection coefficients for parallel and perpendicular
polarizations, respectively. The Poincaré sphere angles γ r and δr of the reflected field can now
be written by referring to (5-96a) and (5-96b) as

γ r = tan−1

(
|Er

⊥|
|Er

|||

)
= tan−1

(
|�b

⊥|E 0
⊥

|�b
|| |E 0

||

)
= tan−1

(
|�b

⊥|
|�b

|| |
tan γ i

)

δr = φr
⊥ − φr

|| = (δi + ζ r
⊥) − (π + ζ r

|| ) = (δi − π) + (ζ r
⊥ − ζ r

|| )

(5-97a)

(5-97b)
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where δr is the phase angle by which the perpendicular (y) component leads the parallel (x ′′)
component of the reflected field. Using the angles γ r and δr of (5-97a) and (5-97b), the corre-
sponding Poincaré sphere angles εr , τ r (tilt angle of ellipse) and axial ratio (AR)r of the reflected
field can be found using the relations

sin(2εr ) = sin(2γ r ) sin(δr )

tan(2τ r ) = tan(2γ r ) cos(δr )

(AR)r = cot(εr )

(5-98a)

(5-98b)

(5-98c)

Following a similar procedure, the transmitted fields can be expressed as

Et
|| = âx ′′′E t

||e
−jβt • r = âx ′′′T b

|| E 0
|| e−jβt • r = âx ′′′ |T b

|| |E 0
|| e−j (βt • r−ξ t

||)

= âx ′′′ |T b
|| |E 0

|| e−j (βt • r−φt
||) (5-99a)

Et
⊥ = ây E t

⊥e−jβt • r = ây T b
⊥E 0

⊥e−j (βt • r−φt
⊥) = ây |T b

⊥|E 0
⊥e−j (βt • r−δi −ξ r

⊥)

= ây |T b
⊥|E 0

⊥e−j (βt • r−φt
⊥) (5-99b)

where ξ t
|| , and ξ t

⊥ are the phases of the transmission coefficients for parallel and perpendicular
polarizations, respectively. The Poincaré sphere angles δt and γ t can now be written by referring
to (5-99a) and (5-99b) as

γ t = tan−1

(
|Et

⊥|
|Et

|||

)
= tan−1

(
|T b

⊥|E 0
⊥

|T b
|| |E 0

||

)
= tan−1

(
|T b

⊥|
|T b

|| |
tanγ i

)

δt = φt
⊥ − φt

|| = (δi + ξ t
⊥) − ξ t

|| = δi + (ξ t
⊥ − ξ t

||)

(5-100a)

(5-100b)

where δt is the phase angle by which the perpendicular (y) component of the transmitted field
leads the parallel (x ′′′) component of the transmitted field. Using the angles γ t and δt of (5-100a)
and (5-100b), the corresponding Poincaré sphere angles εt , τ t (tilt angle of ellipse) and axial
ratio (AR)t of the transmitted field can be found using the relations

sin(2εt ) = sin(2γ t ) sin(δt )

tan(2τ t ) = tan(2γ t ) cos(δt )

(AR)t = cot(εt )

(5-101a)

(5-101b)

(5-101c)

The set of (5-96a) through (5-98c) and (5-99a) through (5-101c) can be used to find, respec-
tively, the polarization of the reflected and transmitted fields once the polarization of the incident
fields of (5-93a) through (5-94d) has been stated. A block diagram of the relations between the
incident, reflected, and transmitted fields is shown in Figure 5-17. The parallel component of the
incident field is taken as the reference for the phase of all of the other components.
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Figure 5-17 Block diagram for polarization analysis of reflected and transmitted waves.

Example 5-12

A left-hand (CCW) circularly polarized field traveling in free space at an angle of θi = 30◦ is incident
on a flat perfect electric conductor of infinite extent. Find the polarization of the reflected wave.

Solution: A circularly polarized wave is made of two orthogonal linearly polarized components
with a 90◦ phase difference between them. Therefore we can assume that these two orthogonal linearly
polarized components represent the perpendicular and parallel polarizations. Since the reflecting surface
is perfectly conducting (η2 = 0), the reflection coefficients of (5-17a) and (5-24c) reduce to

�b
⊥ = −1 = 1

/
π ⇒ |�b

⊥| = 1 ζ r
⊥ = π

�b
|| = −1 = 1

/
π ⇒ |�b

|| | = 1 ζ r
|| = π

Since the incident field is left-hand circularly polarized, then according to (5-93a) through (5-94b)

E 0
|| = E 0

⊥

δi = φi
⊥ = π

2

γ i = tan−1

(
E 0

⊥
E 0

||

)
= π

4
⇒ tan γ i = 1

Thus according to (5-97a) and (5-97b)

γ r = tan−1

(
|�b

⊥|
|�b

|| |
tan γ i

)
= π

4

δr = δi − π + (ζ r
⊥ − ζ r

|| ) = π

2
− π + (π − π) = −π

2

On the Poincaré sphere of Figure 4-20 the angles γ r = π/4 and δr = −π/2 define the south pole,
which represents right-hand (CW) circular polarization. Therefore, the reflected field is right-hand (CW)
circularly polarized, and it is opposite in rotation to that of the incident field as shown in Figure 5-18a .
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Figure 5-18 Circularly polarized wave incident upon flat surfaces with infinite and zero conductivities.
(a) Infinite conductivity. (b) Lossless ocean.
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Example 5-13

A left-hand (CCW) circularly polarized field traveling in free space at an angle of θi = 30◦ is incident
on a flat lossless (σ2 = 0) ocean (ε2 = 81ε0, μ2 = μ0) of infinite extent. Find the polarization of the
reflected and transmitted fields.

Solution: Since the incident field is left-hand circularly polarized, then according to (5-93a) through
(5-94b)

E 0
|| = E 0

⊥

δi = φi
⊥ = π

2

γ i = tan−1

(
E 0

⊥
E 0

||

)
= π

4
⇒ tan γ i = 1

To find the polarization of the reflected field, we proceed as follows. Using (5-18a)

�b
⊥ =

cos(30◦) − √
81

√
1 − ( 1

81

)
sin2(30◦)

cos(30◦) + √
81

√
1 − ( 1

81

)
sin2(30◦)

=
0.866 − 9

√
1 − 1

81

( 1
4

)
0.866 + 9

√
1 − 1

81

( 1
4

)
= 0.866 − 8.986

0.866 + 8.986

�b
⊥ = −0.824 ⇒ |�b

⊥| = 0.824 ζ r
⊥ = π

Using (5-25a)

�b
|| =

− cos(30◦) +
√

1
81

√
1 − ( 1

81

)
sin2(30◦)

cos(30◦) +
√

1
81

√
1 − ( 1

81

)
sin2(30◦)

=
−0.866 + 1

9

√
1 − 1

81

( 1
4

)
0.866 + 1

9

√
1 − 1

81

( 1
4

)
= −0.866 + 0.111

0.866 + 0.111

�b
|| = −0.773 ⇒ |�b

|| | = 0.773 ζ r
|| = π

According to (5-97a) and (5-97b)

γ r = tan−1

(
|�b

⊥|
|�b

|| |
tan γ i

)
= tan−1

(
0.824

0.773

)
= 46.83◦ = 0.817 rad

δr = δi − π + (ζ r
⊥ − ζ r

|| ) = π

2
− π + (π − π) = −π

2

Using (5-98a) through (5-98c)

2εr = sin−1[sin(2γ r ) sin(δr )]

= sin−1
[
sin(93.66◦) sin

(
−π

2

)]
= −86.34◦

⇒ εr = −43.17◦

2τ r = tan−1[tan(2γ r ) cos(δr )]

= tan−1
[
tan(93.66◦) cos

(
−π

2

)]
= 180◦

⇒ τ r = 90◦
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(AR)r = cot(εr ) = cot(−43.17◦) = −1.066

On the Poincaré sphere of Figure 4-20 the angles γ r = 0.817 and δr = −π/2 locate a point on the
lower hemisphere on the principal xz plane. Therefore the reflected field is right-hand (CW) elliptically
polarized, and it has an opposite sense of rotation compared to the left-hand (CCW) circularly polarized
incident field as shown in Figure 5-18b. Its axial ratio is −1.066.

To find the polarization of the transmitted field we proceed as follows. Using (5-18b)

T b
⊥ = 2 cos(30◦)

cos(30◦) + √
81

√
1 − ( 1

81

)
sin2(30◦)

= 2(0.866)

0.866 + 8.986

= 0.1758 ⇒ |T b
⊥| = 0.1758 ξ t

⊥ = 0

Using (5-25b)

T b
|| =

2
√

1
81 cos(30◦)

cos(30◦) +
√

1
81

√
1 − ( 1

81

)
sin2(30◦)

= 2
( 1

9

)
0.866

0.866 + 0.111

= 0.197 ⇒ |T b
|| | = 0.197 ξ t

|| = 0

According to (5-100a) and (5-100b)

γ t = tan−1

(
|T b

⊥|
|T b

|| |
tan γ i

)
= tan−1

(
0.1758

0.197

)
= 41.75◦ = 0.729 rad

δt = δi + (ξ t
⊥ − ξ t

||) = π

2
+ (0 − 0) = π

2

Using (5-101a) through (5-101c)

2εt = sin−1[sin(2γ t ) sin(δt )] = sin−1[sin(83.5◦) sin(90◦)] = 83.5◦

⇒ εt = 41.75◦

2τ t = tan−1[tan(2γ t ) cos(δt )] = tan−1[tan(83.5◦) cos(90◦)] = 0

⇒ τ t = 0◦

(AR)t = cot(εt ) = cot(41.75◦) = 1.12

On the Poincaré sphere of Figure 4-20 the angles γ t = 0.729 and δt = π/2 locate a point on the upper
hemisphere on the principal xz plane. Therefore the transmitted field is left-hand (CCW) elliptically
polarized, and it is of the same sense of rotation as the left-hand (CCW) circularly polarized incident
field as shown in Figure 5-18b. Its axial ratio is 1.12.

5.7 METAMATERIALS

The decades of the 1990s and 2000s had renewed interest and excitement into the field of
electromagnetics, especially as they relate to the integration of a special type of artificial dielec-
tric materials, coined metamaterials [13–18]. Using a ‘broad brush,’ the word metamaterials
can encompass engineered textured surfaces, artificial impedance surfaces, artificial magnetic
conductors, double negative materials, frequency selective surfaces, Photonic Band-Gap (PBG)
surfaces, Electromagnetic Band-Gap (EBG) surfaces/structures , and even fractals or chirals .
Artificial impedance surfaces are discussed in Section 8.8. In this section we want to focus



Balanis c05.tex V3 - 11/23/2011 11:47 A.M. Page 228

228 REFLECTION AND TRANSMISSION

more on material structures whose constitutive parameters (permittivity and permeability) are
both negative, often referred to as Double Negative (DNG). Artificial magnetic conductors can
also be included in the DNG class of materials. It is the class of DNG materials that has capti-
vated the interest and imagination of many leading researchers and practitioners, scientists and
engineers, from academia, industry, and government. When electromagnetic waves interact with
such materials, they exhibit some very unique and intriguing characteristics and phenomena that
can be used, for example, to optimize the performance of antennas, microwave components and
circuits, transmission lines, scatterers, and optical devices such as lenses. While the revitalization
of metamaterials introduced welcomed renewed interest in materials for electromagnetics, it also
brought along some spirited dialogue, which will be referred to in the pages that follow.

The word meta , in metamaterials , is a Greek word that means beyond/after. The term meta-
materials was coined in 1999 by Dr. Rodger Walser, of the University of Texas-Austin and
Metamaterial, Inc., to present materials that are artificially fabricated so that they have electro-
magnetic properties that go beyond those found readily in nature. In fact, the word has been used
to represent materials that microscopically are intrinsically inhomogeneous and constructed from
metallic arrangements that exhibit periodic formations whose period is much smaller than the
free-space and/or guided wavelenth. Using Dr. Walser’s own words, he defined metamaterials
as ‘Macroscopic composites having man-made, three-dimensional, periodic cellular architecture
designed to produce an optimized combination, not available in nature, of two or more responses
to specific excitation’ [19]. Because of the very small period, such structures can be treated as
homogeneous materials, similarly to materials found in nature, and they can then be represented
using bulk constitutive parameters, such as permittivity and permeability. When the period is not
small compared to the free-space or guided wavelength, then such materials can be examined
using periodic analysis (i.e., the Floquet Theorem). Typically the construction of metamaterials
is usually performed by embedding inclusions or inhomogeneities in the host medium, as shown
in Figure 5-19 [13].

5.7.1 Classification of Materials

In general, materials, using their constitutive parameters ε (permittivity) and μ (permeability) as
a reference, can be classified into four categories. They are those that exhibit:

• Negative ε and positive μ; they are usually coined as ENG (epsilon negative) material.
• Positive ε and positive μ; they are usually coined as DPS (double positive) material.

Figure 5-19 Metamaterial representation using embedded periodic inclusions (after [13]).
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Figure 5-20 Characterization of materials according to the values of their permittivity and permeability
(after [13], [17]).

• Negative ε and negative μ; they are usually coined as DNG (double negative) material.
• Positive ε and negative μ; they are usually coined as MNG (mu negative) material.

These are shown schematically in Figure 5-20.
Of the materials shown in Figure 5-20, the ones that usually are encountered in nature are those

of DPS (double positive; first quadrant, like dielectrics such as water, glass, plastics, etc.), ENG
(epsilon negative; second quadrant, like plasmas) and MNG (mu negative; fourth quadrant, like
magnetic materials). Obviously the one set that is most widely familiar and used in applications
is that of DPS, although the other two, ENG and MNG, are used in a wide range of applications.

5.7.2 Double Negative (DNG) Materials

The materials that have recently captured the attention and imagination of electromagnetic engi-
neers and scientists are the DNG, which, as indicated, are not found in nature but may be
artificially realizable. The DNG materials are also referred to as NRI (negative refractive index),
NIM (negative index material), BW (backward) media, and left-handed (LH) media, to name a
few. For clarity and simplicity, we will stay with the DNG designation. The DNG class has cre-
ated an intense activity as many have attempted to incorporate material with such characteristics
to design, enhance, or increase the performance of lenses, microwave circuits, transmission lines,
antennas, phase shifters, broadband power dividers, backward and forward leaky-wave antennas,
electrically small ring antennas, cloaking, plasmonic nanowires, photonic crystals, and miniatur-
ization [13–21]. More specifically, using antennas as an example, it has been reported that the
integration of materials with radiating elements can increase the radiated power, enhance the
gain, and tune the frequency of operation.

While there has been a lot of activity since the recent revival of metamaterials, their intro-
duction has also created some spirited dialogue about the negative index-of-refraction, negative
refraction angle, and phase advancement [19–21]. What may have elevated this dialogue to a
greater level is that some of the reported results using DNG metamaterials may have been over-
stated, and lacked verification, interpretation and practical physical realization [22] Appendix C
of [23]. However, within the broader definition of metamaterials, there have been metamate-
rial structures whose performance, when combined with devices and circuits, has been validated
not only by simulations but also by careful experimentation. For such structures not only good
agreement between simulations and measurements has been found, but also the results have been
within limits of physical reality and interpretation. Some of these have been acknowledged for
their validity, and they have also often been referred to as engineered textured surfaces, artificial
impedance surfaces (AIS), artificial magnetic conductors (AMC), photonic band-gap structures
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(PBG), and electromagnetic band-gap structures (EBG). This class of metamaterials is discussed
in Section 8.8, and the reader is referred to that section for details and references.

Because of the interest in the electromagnetic community, it is important that the topic of
metamaterials be introduced to graduate students, and maybe even to undergraduates, but pre-
sented in the proper context. Because of space limitations, only an introductory overview of the
subject is included in this book. A succinct chronological sequence of the basic events that led to
this immense interest in metamaterials is also presented. The reader is referred to the literature
for an in-depth presentation of the topic and its applications.

5.7.3 Historical Perspective

The origins of metamaterials can be traced back to the end of the 19th century, and they are
outlined in many publications. Since metamaterials is a rather new designation, it is a branch of
artificial dielectrics. In fact, it was indicated in 1898 that Jajadis Chunder Bose may have emulated
chiral media by using man-made twisted fibers to rotate the polarization of electromagnetic waves
[24]. In 1914, Lindman examined artificial chiral media when he attempted to embed into the
material an ensemble of randomly oriented small wire helices [25]. In 1948, Winston E. Kock
of Bell Laboratories introduced the basic principles of artificial dielectrics to design lightweight
lenses in the microwave frequency range (around 3–5 GHz) [26]. His attempt was to replace
at these frequencies, where the wavelength is 10-6 centimeters, heavy and bulky lenses made
of natural dielectric materials. He realized his concept of artificial dielectrics by controlling the
effective index-of-refraction of the materials by embedding into them, and arranging periodically,
metallic disks and spheres in a concave lens shape.

The paper that revived the interest in the special class of artificial materials, now coined
metamaterials and not found in nature, was that of Victor Veselago in 1968 who analyzed
the propagation of uniform waves in materials that exhibited, simultaneously, both negative
permittivity and permeability (DNG; double negative) [27]. Although Veselago may not have
been interested in dielectric materials, he examined analytically the wave propagation through
materials that exhibited, simultaneously, negative ε and negative μ. One of the materials that can
be created in nature is plasma, which can exhibit negative permittivity. Plasma is an ionized gas of
which a significant number of its charged particles interact strongly with electromagnetic fields and
make it electrically conductive. For those that lived through the birth of the U.S. space program
in the mid-1960s, led by NASA, there was a lot of interest and research in plasmas, formed
beneath and around the nose of the spacecraft during re-entry that caused loss of communication
with the astronauts during the final 10–15 minutes of landing. To attempt to alleviate this loss of
communication (referred to then as blackout), due to the formed plasma sheath near the nose and
belly of the spacecraft, NASA initiated and carried out an intense research program on plasma.
The plasma was modeled with a negative dielectric constant (negative permittivity), and it was
verified through many experiments.

Although Veselago may have known that negative ε can be obtained by plasma-type materials,
he did not speculate, at least in [27], how and what kind of materials may exhibit DNG properties.
However, he was able to show and conclude, through analytical formulation, that for wave
propagation through DNG type of materials, the direction of the power density flow (Poynting
vector) is opposite to the wave propagation (phase vector). He referred to such materials as
left-handed . Based on his conclusions, the directions of power density flow and phase velocity for
DPS materials (double positive, which are conventional dielectrics) and DNG materials (double
negative, not found in nature) are illustrated graphically in Figure 5-21, where a uniform plane
wave propagates in DPS (Figure 5-21a) and DNG (Figure 5-21b) materials. The DPS materials
are also dubbed Right-Handed Materials (RHM) while the DNG materials are dubbed as
Left-Handed Materials (LHM). The solid arrows represent the directions of wave vectors (phase
velocities) while the dashed arrows represent power flow (Poynting vectors). While the arrows
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Figure 5-21 Direction of phase vector (β) and Poynting vector (S) for uniform wave propagation in double
positive (DPS) and double negative (DNG) materials. (a) RHM: double positive material (DPS). (b) LHM:
double negative material (DNG).

in Figure 5-21a illustrate the directions that we expect from conventional dielectrics, the arrows
in Figure 5-21b point in the opposite direction, which will indicate that there is a phase advance
(phase wave fronts move toward the source) for the wave in Figure 5-21b and a phase delay for
the wave in Figure 5-21a , which is what we are accustomed to from conventional dielectrics.
To get the phase advance of Figure 5-21b requires that the phase constant (wave number) is
negative. This is accomplished by defining both the permittivity and permeability negative;
thus the name of DNG material. These concepts will be presented here analytically, but first an
outline will be created to lay the groundwork of metamaterials, at least as of this writing.

5.7.4 Propagation Characteristics of DNG Materials

Veselago in his seminal paper showed, using a slab of DNG material embedded into a host DPS
medium (the same DPS to the left and to the right of the DNG slab), that an impinging wave
emanating from a source to the left of the DNG slab will focus, creating caustics at two different
points (one within the DNG slab and the other one to the right of the DNG slab), as long as
the slab is sufficiently thick. This is accomplished by using, for the DNG slab, permittivity and
permeability that are of the same magnitudes but opposite signs as those of the host DPS medium
(ε2 = −ε1, μ2 = −μ1; index-of-refraction n2 = −n1). This is shown graphically in Figure 5-22,
and it is often referred to as the Veselago planar lens . This, of course, seemed very attractive and
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Figure 5-22 Veselago’s planar/flat lens: focusing by a DNG slab between two DPS materials [19].
Reprinted with permission from John Wiley & Sons, Inc.
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was probably one of the reasons the genesis of the renewed interest of modern metamaterials.
However, the Veselago planar lens was also analyzed using a classical method based on Fourier
transforms in the frequency domain, and the sinusoidal field exciting the lens expressed in terms
of even and odd resonant surface wave modes whose amplitudes were evaluated by residues at
the poles [28], Appendix D of [23]. Based on this analytical approach, the following observations
were made in [28], Appendix D of [23]: A CW sinusoidal source solution to “a lossless Veselago
flat lens with super resolution is not physically possible” because of the presence of surface waves
that produce divergent fields over a region within and near the Veselago lens. If losses are included,
the excited interfering surface wave modes will decay in a short time interval; however, the lens
resolution will depend on the losses, and it will be substantially reduced if they are moderate to
large [28], Appendix D of [23]. The analysis assumes that the incident field has a finite continuous
frequency spectrum, and the negative epsilon and mu are frequency dispersive, which Veselago
indicates are necessary for the field energy to be positive.

The time-domain solution to a frequency dispersive Veselago lens illuminated by a sinusoidal
source that begins at t = 0 has also been determined [29]. The time-domain fields remain finite
everywhere for finite time t and approach the fields of a CW source only as t → ∞. In particular,
the divergent fields encountered in the CW solution to the lossless Veselago lens are caused by
the infinite CW energy imparted (during the infinite amount of time between t → −∞ and the
present time t) to the evanescent fields in the vicinity of the slab; analogous to the divergent
fields produced by a CW source inside a lossless cavity at a resonant frequency.

The work of Veselago remained dormant for about 30 years, and it was not until the late 1990s
when Pendry and his colleagues suggested that DNG materials could be created artificially by
using periodic structures [30–33]. Not long after Pendry, Smith and his collaborators [34–38]
built materials that exhibited DNG characteristics. This was accomplished by the use of a structure
consisting of split-ring resonators and wires, a unit cell of which is shown in Figure 5-23. It
was suggested that the split-ring element, of the type shown in Figure 5-23a , will contribute a
negative permeability while the infinite length wire of Figure 5-23b will contribute a negative
permittivity; the combination of the two will, in a periodic structure, contribute a negative index-
of-refraction. An experimental array of split-ring resonators and wires is shown in Figure 5-24.
In fact, Smith and his team claimed to have observed experimentally negative refraction. In [19]
this phenomenon was claimed to be radiation from either a surface wave characteristic of finite
periodic structures or possibly a sidelobe from the main beam [39].

Because of the immense interest in DNG materials, with negative permittivity and permeability,
there were a number of subsequent experiments, in addition to that in [38], to attempt to verify
the negative permittivity and permeability, and thus negative index-of-refraction. Some of these

(a) (b)

Figure 5-23 Simulation of DNG material (negative refraction) using split-ring resonators and wires.
(a) Split ring. (b) Wire.
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Figure 5-24 Simulation of DNG material (negative refraction) using split-ring resonators and wires [38].
“From R. A. Shelby, D. R. Smith, S. Shultz, ‘Experimental verification of a negative index-of-refraction,’
Science, vol. 292, pp. 77–79, April 2001. Reprinted with permission from AAAS.”

experiments, along with the corresponding references, are summarized in [40]. For the simulations,
a frequency-dispersive Drude model [13] was used to represent the negative permittivity of the
infinite wires while a frequency-dispersive Lorentz model [32] was utilized for the representation
of the negative permeability of the split-rings of Figure 5-23. The experiments consisted of
parallel plate waveguide techniques utilizing both metamaterial slabs and prisms [40], and most
of the measurements were carried out in the 4–20 GHz region. The refraction could be observed
by having the slab samples rotated or by having the plane wave incident at an oblique angle.
While the nearly plane wave incidence was easier to implement experimentally, the rotation of the
samples yield good experimental results. The use of prisms was also an alternative and popular
experiment. The metamaterial slabs and prisms were fabricated by embedding various geometrical
shapes to represent the characteristics of both wire and different shape split-ring inclusions. In
some of the experiments, the metamaterials included only split-ring type of inclusions to verify
the negative permeability. The use of an S-shaped unit cell in the metamaterial structure provided
an alternative geometry that simulated both a negative permittivity and permeability, and thus
did not require the straight wire to represent the negative permittivity; alternate S-ring designs
could also be used to possibly achieve dual frequency bands [40]. Gaussian beams and nearly
simulated plane waves were used to perform transmission and focusing experiments to validate
the negative index-of-refraction, using both dielectric and solid state structures. The solid state
metamaterial structures were introduced to minimize the mismatch losses (which were greater
for dielectric structures and led to low power levels), improve the mechanical fragility, and
make metamaterials more attractive for industrial applications [40]. It was reported that both the
transmission and focusing experiments produced results that indicated negative permittivity and
permeability, and thus, the creation of a negative effective index-of-refraction [40].

The attractive performance of devices and systems that incorporated metamaterials led to
the genesis of the enormous interest on the subject by many teams around the world, and the
avalanche of papers published in transactions and journals, presented in symposia and conferences,
and applied to numerous problems with exotic characteristics and performances. The word meta-
materials became a ‘household’ word in the electromagnetic community in the 2000–2010 time
period. This type of materials exhibit narrow bandwidths, which may have limited its applications.

5.7.5 Refraction and Propagation Through DNG Interfaces and Materials

Now that a brief historical and chronological background of the evolution of metamaterials
has been outlined, we will present a special case of what initially were referred to as artificial
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dielectrics, the basics from the analytical point of view as well as from a sample of simulations,
and experiments. It should be pointed out, however, that what ensued after the work by Pendry
and Smith was a plethora of publications which are too numerous to include here. Up to this
point an attempt was made to reference some of the most basic books and papers. The reader
is referred to the technical transactions, journals, and letters where most of these ensuing papers
were published or presented at leading international conferences and symposia. Most of these
can be found in references [41–46].

The greatest potential of the DNG materials is the creation of a structure with a negative
index-of-refraction n defined as

n2 = εrμr ⇒ n = ±√
εrμr = ±√−|εr |(−|μr |) = ±(j

√|εr |)(j
√|μr |) = ±j 2√|εrμr |

n = ∓√|εrμr | (5-102)

Which sign of n should be chosen for DNG materials (with both εr and μr negative)? It seems
from (5-102) that there are two basic choices; either negative or positive n . If a positive n is
selected, that resorts back to the DPS representation. If the negative value of n in (5-102) is
selected, then that is the basis of DNG materials.

Materials with negative index-of-refraction have some interesting properties, some of which
have been mentioned and illustrated in Figure 5-21. Now let us examine two interface options
using Snell’s law of refraction which is the manifest of phase match across the interface. Of
particular interest are materials with negative index-of-refraction.

• Snell’s law of refraction, represented by (5-15b) and (5-24b), or

β1 sin θi = ω
√

μ1ε1 sin θi ≡ β2 sin θt = ω
√

μ2ε2 sin θt (5-103)

can also be written as
n1 sin θi = n2 sin θt (5-104)

When the index-of-refraction of both materials forming the interface is positive, then the
refracted ray (transmitted wave) will be, as expected for conventional materials, on the
same side (relative to the normal to the interface) as the reflected ray, as illustrated in
Figure 5-25a . However, when the index-of-refraction of one material is positive while that
of the other is negative, the refracted ray (transmitted wave) will be in the opposite direction
of the reflected ray, as illustrated in Figure 5-25b.

• For DNG materials with a negative index-of-refraction the phase constant (wave number) of
the wave traveling in the DNG material is negative, or based on the definition of (5-103)

β2 = ω
√

μ2ε2 = −ω
√

|μ2| |ε2| (5-105)

This implies that, for positive time, there will be a phase advance (phase wavefronts move
toward the source), instead of a phase delay that we have been accustomed to. This is an
interesting phenomenon, which has been part of the spirited dialogue.

So, based on the above, a negative index-of-refraction leads to:

• A refracted angle that is on the same side, relative to the normal to the interface, as the
incident angle, and the power flow (Poynting vector) is outward (as expected); however, the
phase vector in inward (opposite to the Poynting vector).

• Phase advance, instead of phase delay that is typical of DPS materials.

Based on the above, let us examine through an example a more general case of the planar lens
that was illustrated in Figure 5-22.
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Figure 5-25 Refraction by planar interface created by double positive (DPS) and double negative (DNG)
materials. (a) DPS-DPS. (b) DPS-DNG.
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Example 5-14

Figure 5-22 displays Veselago’s planar/flat lens. A more general one is the one of Figure 5-26 where a
DNG slab is sandwiched within free space. Given the dimensions of the DNG slab of thickness d and
the source position s , as shown in the Figure 5-26, determine the location of the foci (caustics) f0 and f1
(one within the DNG slab and one outside it) in terms of the incidence angle θi , position of the source s ,
and thickness d and index-of-refraction n1 of the DNG slab. Assume the DNG slab possesses negative
permittivity −ε1, negative permeability −μ1, and negative index-of-refraction −n1. Furthermore, let us
assume that we are looking for a solution based on geometrical optics.

Solution: Using (5-103) through (5-105), we can write for the leading interface between free space
and the DNG slab that

θ1 = sin−1
(

1

|n1| sin θi

)
Also from Figure 5-26

tan θi = h1

s
⇒ h1 = s tan θi

tan θ1 = h1

f0
⇒ h1 = f0 tan θ1

Equating the two previous equations leads to

s tan θi = f0 tan θ1 ⇒ f0 = s
tan θi

tan θ1
⇒ tan θ1 = s

f0
tan θi

From Figure 5-26

tan θ0 = h2

f1
⇒ h2 = f1 tan θ0

tan θ1 = h2

d − f0
⇒ h2 = (d − f0) tan θ1

Equating the last two equations leads to

f1 tan θ0 = (d − f0) tan θ1 ⇒ f1 = (d − f0)
tan θ1

tan θ0

which can also be expressed, assuming d > f0, as

f1 = (d − f0)
tan θ1

tan θ0
= (d − f0)

s

f0

tan θi

tan θ0

Since θ0 = θi , the above equation reduces to

f1 = (d − f0)
s

f0

As the magnitude of −ε1 approaches that of free space (that is |−ε1| → |ε0| ⇒ |−n1| → |n0| = 1),
the focal distance f0 approaches s(f0 → s) and f1 approaches d − s(f1 → d − s). Then Figure 5-26
reduces, in this limiting case, to Figure 5-22. When s becomes very large (approaching infinity), the
incident wave reduces to near normal incidence. In this case the focusing moves toward infinity (ideally
no focusing).
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s d

e0, m0, n0 = 1 e0, m0, n0 = 1

qi q1
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−e1, −m1, −n1

q1 = q2
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Figure 5-26 DNG dielectric slab bounded on both sides by free space.

n = +1 n = +1

d

Figure 5-27 Negative refraction from a DNG slab [48]. Copyright © by The Optical Society of America.
Permission and courtesy of R. W. Ziolkowski.

To illustrate the DNG refraction, a simulation has been performed, using the Finite-Difference
Time-Domain method, of a 30 GHz perpendicularly polarized CW Gaussian beam incident at
20◦ on a DNG slab bordered from the left and right by free space, as shown in Figure 5-27 [48].
Because the incident wave is a plane wave, there is no focusing. The index-of-refraction of the
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Figure 5-28 Reflection and transmission through a DNG slab.

DNG slab is n = −1, and it was chosen to minimize reflections. Identical electric and magnetic
Drude models were selected with parameters chosen so that only small losses were considered
[13, 48]. Assuming the stated parameters of the media, the negative refraction is visible at the
leading and trailing interfaces.

Another interesting observation will be to illustrate, through an example, the propagation
of a plane wave through a slab of metamaterial, of thickness d , when it is embedded into a
conventional dielectric material, as shown in Figure 5-28. This is similar to the problem for
ordinary dielectrics, illustrated in Figure 5-11. For convenience, it is assumed that in Figure 5-28
the media to the left and right of the metamaterial DNG slab are both conventional dielectrics
and identical . Also, at first we examine wave propagation at normal incidence, which is similar
to that of conventional dielectrics, shown in Figure 5-11. The phase vectors β ( ) and
Poynting vectors S ( ) in each region are also indicated by their respective arrows. The
analytical formulation of the reflection and transmission coefficients follows.

Example 5-15

For the DNG geometry of Figure 5-28, derive a simplified expression for the total input reflection at
the initial interface and the total transmission coefficient through the entire DNG slab.

Solution: Using (5-67d), the total input reflection coefficient at the leading edge of the slab can be
written as

� = E r

E t
= �12 + �23e−j 2β2d

1 + �12�23e−j 2β2d

�23=−�12
η3=η1 �12

(
1 − e−j 2β2d

)
1 − (�12)2e−j 2β2d

which for a DNG slab, based on (5-105), reduces to

� = E r

E t
= �12 + �23e+j 2|β2|d

1 + �12�23e+j 2|β2|d

�23=−�12
η3=η1 �12

(
1 − e+j 2|β2|d )

1 − (�12)2e+j 2|β2|d
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since

�12 =
[

η2 − η1

η2 + η1

]
= −�23

Similarly, it can be shown that the transmission coefficient can be written as [13]

T = E t

E i
= 4η2η3e−jβ2d

(η1 + η2) (η2 + η3)

1(
1 + �12�23e−jβ2d

)
T = E t

E i

�23=−�12
η3=η1 4η2η1e−jβ2d

(η1 + η2)
2

1[
1 − (�12)

2 e−jβ2d
]

which for the DNG slab reduces to

T = E t

E i

�23=−�12
η3=η1 4η2η1e+j 2|β2|d

(η1 + η2)
2

1[
1 − (�12)

2 e+j 2|β2|d ]

An interesting observation is made if the DNG dielectric slab of Example 5-15 is matched
to the medium it is embedded; that is, if η2 = η1. For this case, �12 = 0, and the total input
reflection and the transmission coefficients of Example 5-15 reduce, respectively, to

� = 0 (5-106a)

T = e+j 2|β2|d (5-106b)

The transmission coefficient of (5-106b) indicates a phase advance (phase wavefront moving
toward the source), instead of a phase delay as we are accustomed for wave propagation through
conventional materials. This wave propagation through DNG materials is a unique feature that
can be taken advantage of in various applications. As an example, the usual phase delay in
conventional dielectric slabs and/or transmission lines can be compensated by phase advance in
DNG type of slabs and/or transmission lines [13, 15, 16, 47] and others.

Now consider a uniform plane wave propagating at oblique incidence through a planar interface
consisting of two materials. The case where both media are DPS has been treated in Section 5.3.1
for perpendicular polarization (Figure 5-2) and in Section 5.3.2 for parallel polarization
(Figure 5-4). Now we will examine the wave propagation through a DNG medium; in this case
medium 2 is DNG, when the first medium is DPS. However, before this is done, the interface
formed by two DPS materials will be examined first. The planar interface formed by one DPS
and one DNG material is examined afterwards. Only the perpendicular polarization of Figure 5-2
is considered. The same procedure can be applied to Figure 5-4 for the parallel polarization.

Based on the geometry of Figure 5-2, the vector wavenumbers for the incident, reflected, and
transmitted fields can be written as

βi = β1 (âx sin θi + âz cos θi ) = n1
ω

v0
(âx sin θi + âz cos θi ) (5-107a)

βr = β1 (âx sin θi − âz cos θi ) = n1
ω

v0
(âx sin θi − âz cos θi ) (5-107b)

βt = β2 (âx sin θt + âz cos θt ) = n2
ω

v0
(âx sin θt + âz cos θt ) (5-107c)
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Using the expressions for the electric and magnetic fields of (5-10a) through (5-12b), the Poynting
vectors for the respective three fields (incident, reflected, and refracted) can be written as

Si = 1

2

|E0|2
η1

(âx sin θi + âz cos θi ) (5-108a)

Sr = 1

2

|�E0|2
η1

(âx sin θi − âz cos θi ) (5-108b)

St = 1

2

|TE0|2
η2

(âx sin θt + âz cos θt ) (5-108c)

This is left as end-of-the-chapter exercises for the reader. It is apparent, from the vectors within
the parentheses in (5-107a) through (5-108c), that for a DPS-DPS interface the phase vectors and
the Poynting vectors for all three fields (incident, reflected, and refracted) are all parallel to each
other and in the same directions.

Now let us consider the same oblique incidence upon a DPS-DNG interface, as shown in
Figure 5-29. Snell’s law of refraction, which is given by (5-103) and (5-104), can be expressed
as

sin θt = ω
√

μ1ε1

ω
√

μ2ε2
sin θi = n1

n2
sin θi ⇒ θt = sin−1

(
n1

n2
sin θi

)
(5-109)

For positive n1 and n2, the angle θt is positive, and everything follows what we already have
experienced with DPS materials. However, when n1 and n2 have opposite signs, the angle θt

is negative, as indicated in Figures 5-25, 5-26, and 5-29, and simulated in Figure 5-27. Based
on these figures, whose interface is formed by a DPS and a DNG material (which leads to a
negative angle of refraction), we will examine the directions of the phase vectors of (5-107) and
Poynting vectors of (5-108) for the perpendicular polarization. The same can be done for the
parallel polarization. This is left as an end-of-the-chapter exercise for the reader.

DPS 
(e1, m1, n1)

DNG 
(−e2, −m2, −n2)

qi

qr
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qt
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Transmitted

z
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Et
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x

Figure 5-29 Uniform plane wave reflection and refraction of perpendicular polarization by a planar inter-
face formed by DPS and DNG materials.
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Since for the interface of Figure 5-29 the index-of-refraction of medium 2 is negative and
the wavenumber is also negative, as expressed by (5-105), the wave vectors of (5-107a) and the
Poynting vectors of (5-108a) can now be written, respectively, as

βi = β1 (âx sin θi + âz cos θi ) = n1
ω

v0
(âx sin θi + âz cos θi ) (5-110a)

βr = β1 (âx sin θi − âz cos θi ) = n1
ω

v0
(âx sin θi − âz cos θi ) (5-110b)

βt = |β2| (âx sin |θt | − âz cos |θt |) = |n2| ω

v0
(âx sin |θt | − âz cos |θt |) (5-110c)

Si = 1

2

|E0|2
η1

(âx sin θi + âz cos θi ) (5-111a)

Sr = 1

2

|�E0|2
η1

(âx sin θi − âz cos θi ) (5-111b)

St = 1

2

|TE0|2
η2

(−âx sin |θt | + âz cos |θt |) (5-111c)

While the wave and Poynting vectors of the incident and reflected fields are unaffected by the
presence of the DNG material forming the interface in Figure 5-29 [they are the same as in
(5-107) and (5-108)], those of the transmitted fields, as represented by (5-110c) and (5-111c) are
different from the corresponding ones of (5-107c) and (5-108c) in two ways.

The first difference is that the wave vector of (5-110c) is antiparallel to the Poynting vector
of (5-111c), whereas they were parallel for (5-107c) and (5-108c). Also, for positive time, the
wavenumber of (5-107c) leads to a phase delay, but the wavenumber of (5-110c) leads to a phase
advance. In addition, while the phase vector of (5-107c) and the Poynting vector of (5-108c)
are both directed away from the source (point of refraction in the first quadrant), the Poynting
vector of (5-111c) is also directed away from the source, but in the fourth quadrant. These are
also illustrated graphically in Figures 5-21a and 5-21b. These are some of the similarities and
differences in the transmitted fields for DPS-DPS and DPS-DNG interfaces.

5.7.6 Negative-Refractive-Index (NRI) Transmission Lines

Another application of the DNG material is the design of Negative-Refractive-Index Transmission
Lines (NRI-TL) [15, 16, 47]. This concept can be used to design:

• nonradiating phase-shifting lines that can produce either positive or negative phase shift
• broadband series power dividers
• forward leaky-wave antennas

and other applications [16]. When a wave propagates through a DPS medium, like in a conven-
tional dielectric slab of thickness d1, it will accumulate phase lag |φ1| of β1d1(φ1 = −β1d1), also
referred to as negative phase shift, where β1 is the phase constant (wave number). This negative
phase shift can be compensated by a positive phase shift φ2 (φ2 = +|β2|d2) through a DNG
slab that follows the DPS slab. In fact, ideally, the negative phase shift accumulated through
propagation in the DPS slab (φ1 = −β1d1) can be totally eliminated if the positive phase φ2

(φ2 = +|β2|d2) can be created by propagation through the DNG slab such that |φ1| = |φ2| so that
the total phase φ by wave propagation through both slabs is equal to zero (φ = φ1 + φ2 = 0).
Such an arrangement is shown graphically in Figure 5-30 where the arrows are used to designate
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Figure 5-30 Wave propagation through two successive dielectric slabs, one made of DPS material and
the other, of DNG material, for phase wave compensation.

the directions of the phase vectors β and the Poynting vectors S. This phase compensation can
also be used to create any other desired total phase shift by appropriately choosing the phase
constants and thicknesses of the DPS and DNG slabs. The special case of zero phase shift of
wave propagation through both slabs is accomplished provided

|φ1| = ω
√

μ1ε1d1 = |φ2| = ω
√

|μ2| |ε2|d2 ⇒ n1d1 = n2d2 ⇒ d1

d2
= n1

n2
(5-112)

A graphical illustration of such phase compensation of the electric field intensity of a perpen-
dicularly polarized field, simulated using the FDTD method, is exhibited in Figure 5-31 [13]. The
incident field is a Gaussian beam traveling in a free-space medium and normally incident upon
the DPS slab followed by a DNG slab. The indices of refraction were chosen to be nreal(ω) = +3
for the DPS slab and nreal(ω) = −3 for the DNG slab. Observing the phase fronts of the beam
inside the two slabs, it is evident that the beam expands (diverges) in the DPS slab while it
refocuses (converges) in the DNG slab. Ultimately, the phase fronts of the exiting beam in the
free-space medium to the right of the DNG slab begin to expand and match those of the incident
field to the left of the DPS slab. According to [13], there was only 0.323 dB attenuation of wave
propagation through the two slabs that span a total distance of 4λo. However, the total phase
accumulation from the leading edge of the DPS slab to the trailing edge of the DNG slab is zero.
Thus, the output field exits the trailing edge, along the symmetry line of the source/beam which
is perpendicular to the interface, with the same phase as the input field and with only a slight
attenuation in the peak value of about of 0.323 dB, which is due to a small loss in the medium
and to the Gaussian beam diverging from the source. While the negative (second) layer refocuses
the beam, the small loss by the first layer is not totally compensated by the second layer and
leads to the slight attenuation at the output face of the system. Such an arrangement of slabs is
usually referred to, for obvious reasons, as a beam translator [13].

This phase compensation concept can also be applied to compensate for negative phase shift
by wave propagation through a conventional DPS transmission line followed by a NRI line
with DNG material, often referred to as BW (backward-wave) line, as shown graphically in
Figure 5-32 [16].
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d = 2l0d = 2l0

nreal(w) = +3 nreal(w) = −3

Figure 5-31 Phase compensation by successive conventional DPS and DNG slabs [13]. Reprinted with
permission from John Wiley & Sons, Inc. Original courtesy of R. W. Ziolkowski.
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Figure 5-32 Phase compensation by successive conventional and backward-wave transmission lines [16].
Reprinted with permission from John Wiley & Sons, Inc. Originals courtesy of G. V. Eleftheriades and
M. Antoniades. (a) Conventional transmission line followed by a backward-wave line. (b) Equivalent circuit
of conventional transmission line followed by a backward-wave line.
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Figure 5-33 Experimental units, and simulated and measured responses of two- and four-stage phase
shifting lines [16]. Reprinted with permission from John Wiley & Sons, Inc. Originals courtesy of G. V.
Eleftheriades and M. Antoniades. (a) Two-stage phase shifting line (16 mm) (top) and a four-stage phase-
shifting line (32 mm) both at 0.9 GHz [16]. (b) Phase and magnitude responses of a two-stage and four-stage
phase-shifting lines compared to conventional −360◦ TL and a −360◦ low-pass loaded line at 0.9 GHz [16].
Phase: Measured Simulated (Agilent ADS)
Magnitude: . . . Measured Simulated (Agilent ADS)

In Figure 5-32b the equivalent circuit of BW line indicates that the phase advance through the
unit cell of a BW line is given by

φBW = 1

ω
√

LoCo
(5-113)

which is representative of the phase through a high-pass LC filter of the type shown in the unit
cell of the BW line in Figure 5-32b. Such a backward type of a wave, for the equivalent circuit
of the backward section of the line, has also been addressed in [49], which states that “a wave in
which the phase velocity and group velocity have opposite signs is known as a backward wave.
Conditions for these may seem unexpected or rare, but they are not.” In fact, it is also stated
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in [49] that many filter type of lines have backward waves and that periodic circuits exhibit an
equal number of forward and backward “space harmonics.”

The low-pass filter (regular transmission line) and high-pass filter (backward-wave line) char-
acteristics can be verified using the Brillouin dispersion diagram [49, 50], which is a plot of ω

vs. β with the phase velocity defined as

vp = ω

β
(5-114)

while the group velocity is defined as

vg = ∂ω

∂β
(5-115)

For the regular transmission type line vp and vg have the same sign while for the backward-wave
type of line, vp and vg have opposite signs.

Therefore, it seems that in Figure 5-32 there is a low-pass filter (conventional) line followed
by a high-pass filter (BW line) with a total phase shift for the two of

φMTM = φTL + φBW = −ω
√

LC d + 1

ω
√

LoCo
(5-116)

The transmission line is of the delay type while the backward-wave line is of the phase advance
type.

Various one-dimensional phase-shifting lines were constructed at 0.9 GHz using coplanar
waveguide (CPW) technology [16]. Two such units, one a two-stage and the other a four-stage
phase shifters, are shown in Figure 5-33a . The corresponding simulated and measured phase
responses of both units are shown in Figure 5-33b where they are compared with the phase
responses of a conventional −360◦ TL line and a −360◦ low-pass loaded line. The corresponding
magnitudes of both units of 0◦ phase shift are also indicated in Figure 5-33b. A good comparison
is observed between the simulated and measured results and confirms the broadband nature of
the phase shifting lines which also exhibit rather small losses [16].

5.8 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding, and presentation of the material of this chapter.

• MATLAB computer programs:
a. SWR_Animation_�_SWR_Impedance: Animates the standing wave pattern of a plane

wave traveling in a semi-infinite lossless medium and impinging, at normal incidence,
upon a planar interface formed by two semi-infinite planar media; the second medium
can be lossy (see Figure 5-1). It also computes the input reflection coefficient �, SWR,
and input impedance.

b. QuarterWave_Match: Designs a quarter-wavelength impedance transformer of N slabs
to match a given semi-infinite medium (input) to another semi-infinite medium (load).

c. Single_Slab: Characterizes the reflection and transmission characteristics of a single layer
slab bounded on both sides by two semi-infinite media.

d. Refl_Trans_Multilayer: Computes the reflection and transmission coefficients of a uni-
form plane wave incident at oblique angle upon N layers of planar slabs bordered on
either side by free space.

e. Polarization_Refl_Trans: Computes the Poincaré sphere angles, and thus, the polariza-
tion, of a plane wave incident at oblique angles upon a planar interface.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

5.1. A uniform plane wave traveling in a dielec-
tric medium with εr = 4 and μr = 1 is inci-
dent normally upon a free-space medium. If
the incident electric field is given by

Ei = ây 2 × 10−3e−jβz V/m

write the:

(a) Corresponding incident magnetic field.
(b) Reflection and transmission coefficients.
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(c) Reflected and transmitted electric and
magnetic fields.

(d) Incident, reflected, and transmitted po-
wer densities.

zy

x

e0, m0er = 4

mr = 1

Figure P5-1

5.2. The dielectric constant of water is 81.
Calculate the percentage of power density
reflected and transmitted when a uniform
plane wave traveling in air is incident nor-
mally upon a calm lake. Assume that the
water in the lake is lossless.

5.3. A uniform plane wave propagating in a me-
dium with relative permittivity of 4 is inci-
dent normally upon a dielectric medium with
dielectric constant of 9. Assuming both media
are nonferromagnetic and lossless, determine
the:
(a) Reflection and transmission coefficients.
(b) Percentage of incident power density

that is reflected and transmitted.

5.4. A vertical interface is formed by having
free space to its left and a lossless dielec-
tric medium to its right with ε = 4ε0 and
μ = μ0, as shown in Figure P5-4. The inci-
dent electric field of a uniform plane wave
traveling in the free-space medium and inci-
dent normally upon the interface has a value

x

z

e0, m0 4e0, m0

y

Figure P5-4

of 2 × 10−3 V/m right before it strikes the
boundary. At a frequency of 3 GHz, find the:
(a) Reflection coefficient.
(b) SWR in the free-space medium.
(c) Positions (in meters) in the free-space

medium where the electric field maxima
and minima occur.

(d) Maximum and minimum values of the
electric field in the free-space medium.

5.5. A uniform plane wave traveling in air is
incident upon a flat, lossless, and infinite in
extent dielectric interface with a dielectric
constant of 4. In the air medium, a standing
wave is formed. If the normalized magnitude
of the incident E-field is Eo = 1, determine
the:
(a) Maximum value of the E-field standing

wave pattern in air.
(b) Shortest distance l (in λo) from the

interface where the first maximum in the
E- field standing wave pattern will occur
(normalized to the incident field).

(c) Minimum value of the E-field standing
wave pattern in air (normalized to the
incident field).

(d) Shortest distance l (in λo) in air from
the interface where the first minimum
in the E-field standing wave pattern will
occur (normalized to the incident field).

(e) Standing Wave Ratio (SWR) measured
in the air medium.

(f) Input wave impedance inside the air
medium where the:
1. First maximum in the E-field stand-

ing wave pattern occurs.
2. First minimum in the E-field standing

wave pattern occurs.

5.6. A CW circularly-polarized wave of f =
100 MHz of the form

Ei (z ) = (
âx − j ây

)
e−j 6πz

where z is in meters, is traveling inside a
lossless dielectric medium and is normally
incident upon a flat planar interface formed
by the dielectric medium and air. The inter-
face is on the xy-plane. Assuming the per-
meability of the dielectric medium is the
same as free space, determine the:
(a) Dielectric constant (relative permittiv-

ity) of the dielectric medium.
(b) Reflection coefficients for the âx and ây

components.
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(c) Transmission coefficients for the âx and
ây components.

(d) Polarization (linear, circular or ellipti-
cal) of the reflected field.

(e) Sense of polarization rotation, if any, of
the reflected field.

(f) Polarization (linear, circular or ellipti-
cal) of the transmitted field.

(g) Sense of polarization rotation, if any, of
the transmitted field.

x

z
y

Free
space

Dielectric
medium

Incident

Reflected

Transmitted

Figure P5-6

5.7. The field radiated by an antenna along
the +z axis is a uniform plane wave
whose polarization is right-hand circularly-
polarized (RHC). The field radiated by the
antenna impinges, at normal incidence, upon
a perfectly electric conducting (PEC) flat
and infinite in extend ground plane. Deter-
mine the:
(a) Polarization of the field reflected by

the ground plane toward the antenna,
including the sense of rotation (if any).
Justify your answer.

(b) Normalized output voltage (dimension-
less and in dB) at the transmitting
antenna, which is now acting as a receiv-
ing antenna, based on its reception of
the reflected field. Justify your answer.
Is it what you are expecting or is it a
surprise?

PECAntenna z

Incident

Reflectedy

x

Figure P5-7

5.8. A time-harmonic electromagnetic wave
traveling in free space is incident normally
upon a perfect conducting planar surface, as
shown in Figure P5-8. Assuming the inci-
dent electric field is given by

Ei = âx E0e−jβ0z

find the (a) reflected electric field, (b) inci-
dent and reflected magnetic fields, and (c)
current density Js induced on the conducting
surface.

x

z

e0, m0 s = ∞

y

Incident

Reflected

Figure P5-8

5.9. A uniform plane wave traveling in air is
incident normally on a half space occupied
by a lossless dielectric medium of relative
permittivity of 4. The reflections can be
eliminated by placing another dielectric slab,
λ1/4 thick, between the air and the original
dielectric medium, as shown in Figure P5-9.
To accomplish this, the intrinsic impedance
η1 of the slab must be equal to

√
η0η2 where

η0 and η2 are, respectively, the intrinsic
impedances of air and the original dielectric
medium. Assuming that the relative perme-
abilities of all the media are unity, what
should the relative permittivity of the dielec-
tric slab be to accomplish this?

h0 h1 h2

er1 = ? er2 = 4

l1/4

Figure P5-9
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5.10. A uniform plane wave traveling in free
space is incident normally upon a lossless
dielectric slab of thickness t , as shown in
Figure P5-10. Free space is found on the
other side of the slab. Derive expressions
for the total reflection and transmission coef-
ficients in terms of the media constitutive
electrical parameters and thickness of the
slab.

t

x

zy

e0, m0 e0, m0e1, m1

Figure P5-10

5.11. The vertical height from the ground to a per-
son’s eyes is h , and from his eyes to the top
of his head is 	h . A flat mirror of height y
is hung vertically at a distance x from the
person. The top of the mirror is at a height
of h + (	h/2) from the ground, as shown in
Figure P5-11. What is the minimum length
of the mirror in the vertical direction so that
the person only sees his entire image in the
mirror?

Δh

Δh
2

Mirror

h

x

h

y

+

Figure P5-11

5.12. A linearly polarized wave is incident on an
isosceles right triangle (prism) of glass, and
it exits as shown in Figure P5-12. Assum-
ing that the dielectric constant of the prism
is 2.25, find the ratio of the exited average
power density Se to that of the incident Si .

er = 2.25

45°

45°

Figure P5-12

5.13. A uniform plane wave is obliquely incident
at an angle of 30◦ on a dielectric slab of
thickness d with ε = 4ε0 and μ = μ0 that
is embedded in free space, as shown in
Figure P5-13. Find the angles θ2 and θ3 (in
degrees).

d

q3

q2

30°

q3

Figure P5-13

5.14. A perpendicularly polarized uniform plane
wave traveling in free space is obliquely
incident on a dielectric with a relative per-
mittivity of 4, as shown in Figure 5-2. What
should the incident angle be so that the
reflected power density is 25% of the inci-
dent power density?

5.15. Repeat Problem 5-14 for a parallel polarized
uniform plane wave.

5.16. Find the Brewster angles for the interfaces
whose reflection coefficients are plotted in
Figure 5-5.

5.17. A parallel-polarized uniform plane wave
is incident obliquely on a lossless dielec-
tric slab that is embedded in a free-space
medium, as shown in Figure P5-17. Derive
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expressions for the total reflection and trans-
mission coefficients in terms of the electri-
cal constitutive parameters, thickness of the
slab, and angle of incidence.

e0, m0

t

qt

qi

Ei

Hi

e0, m0e1, m1

Figure P5-17

5.18. Repeat Problem 5-17 for a perpendicu-
larly polarized plane wave, as shown in
Figure P5-18.

e0, m0

qt

qi

Ei

Hi

e0, m0e1, m1

t

Figure P5-18

5.19. A perpendicularly polarized plane wave
traveling in a dielectric medium with rel-
ative permittivity of 9 is obliquely incident
on another dielectric with relative permit-
tivity of 4. Assuming that the permeabilities
of both media are the same, find the inci-
dent angle (measured from the normal to the
interface) that results in total reflection.

5.20. Calculate the Brewster and critical angles
for a parallel-polarized wave when the plane
interface is:
(a) Water to air (εr of water is 81).
(b) Air to water.
(c) High density glass to air (εr of

glass is 9).

5.21. A uniform plane wave traveling in a loss-
less dielectric is incident normally on a flat
interface formed by the presence of air. For
εr ’s of 2.56, 4, 9, 16, 25, and 81:
(a) Determine the critical angles.
(b) Find the Brewster angles if the wave is

of parallel polarization.
(c) Compare the critical and Brewster

angles found in parts (a) and (b).
(d) Plot the magnitudes of the reflec-

tion coefficients for both perpendi-
cular, |�⊥|, and parallel, |�|||, polariza-
tions versus incidence angle.

(e) Plot the phase (in degrees) of the reflec-
tion coefficients for both perpendicular
and parallel polarizations versus inci-
dence angle.

5.22. The transmitting antenna of a ground-to-
air communication system is placed at a
height of 10 m above the water, as shown
in Figure P5-22. For a ground separation
of 10 km between the transmitter and the
receiver, which is placed on an airborne plat-
form, find the height h2 above water of the
receiving system so that the wave reflected
by the water does not possess a parallel
polarized component. Assume that the water
surface is flat and lossless.

10 m

104 m

h2

Water (er = 81)

e0, m0

Figure P5-22

5.23. For the geometry of Problem 5-22, the trans-
mitter is radiating a right-hand circularly
polarized wave. Assuming the aircraft is at
a height of 1,101.11 m, give the polarization
(linear, circular, or elliptical) and sense of
rotation (right or left hand) of the following.
(a) A wave reflected by the sea and inter-

cepted by the receiving antenna.
(b) A wave transmitted, at the same reflec-

tion point as in part (a), into the sea.

5.24. The heights above the earth of a transmit-
ter and receiver are, respectively, 100 and
10 m, as shown in Figure P5-24. Assuming
that the transmitter radiates both perpen-
dicular and parallel polarizations, how far



Balanis c05.tex V3 - 11/23/2011 11:47 A.M. Page 252

252 REFLECTION AND TRANSMISSION

apart (in meters) should the transmitter and
receiver be placed so that the reflected wave
has no parallel polarization? Assume that the
reflecting medium is a lossless flat earth with
a dielectric constant of 16.

Transmitter

100 m
Receiver

Earth (er = 16)

10 m

s

e0, m0

Figure P5-24

5.25. A light source that shines isotropically is
submerged at a depth d below the surface of
water, as shown in Figure P5-25. How far in
the x direction (both positive and negative)
can an observer (just above the water inter-
face) go and still see the light? Assume that
the water is flat and lossless with a dielectric
constant of 81.

Water

er = 81

d

x1 x1

x

Figure P5-25

5.26. The 30◦ to 60◦ dielectric prism shown in
Figure P5-26 is surrounded by free space.
(a) What is the minimum value of the

prism’s dielectric constant so that there
is no time-average power density trans-
mitted across the hypotenuse when a

30°

60°

er = ?

qe

Figure P5-26

plane wave is incident on the prism, as
shown in the figure?

(b) What is the exiting angle θe if the dielec-
tric constant of the prism is that found
in part (a)?

5.27. A uniform plane wave of parallel polar-
ization, traveling in a lossless dielectric
medium with relative permittivity of 4, is
obliquely incident on a free-space medium.
What is the angle of incidence so that the
wave results in a complete (a) transmission
into the free-space medium and (b) reflec-
tion from the free-space medium?

5.28. A fish is swimming in water beneath a
circular boat of diameter D , as shown in
Figure P5-28.
(a) Find the largest included angle 2θc of

an imaginary cone within which the fish
can swim and not be seen by an observer
at the surface of the water.

(b) Find the smallest height of the cone.
Assume that light strikes the boat at
grazing incidence θi = π/2 and refracts
into the water.

Water

2qc

D

er = 81

qi qi

Figure P5-28

5.29. Any object above absolute zero temperature
(0 K or −273◦C) emits electromagnetic radi-
ation. According to the reciprocity theorem,
the amount of electromagnetic energy emit-
ted by the object toward an angle θi is equal
to the energy received by the object when
an electromagnetic wave is incident at an
angle θi , as shown in Figure P5-29. The elec-
tromagnetic power emitted by the object is
sensed by a microwave remote detection sys-
tem as a brightness temperature TB given by

TB = eTm = (1 − |�|2)Tm

where
e = emissivity of the object

(dimensionless)
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Water

er = 81, s = 0

e0, m0

qi

qt

Figure P5-29

� = reflection coefficient for the
interface

Tm = thermal (molecular) temperature
of object (water)

It is desired to make the brightness temper-
ature TB equal to the thermal (molecular)
temperature Tm .
(a) State the polarization (perpendicular,

parallel, or both) that will accomplish
this.

(b) At what angle θi (in degrees) will this
occur when the object is a flat water sur-
face?

5.30. A uniform plane wave at a frequency of
104 Hz is traveling in air, and it is incident
normally on a large body of salt water with
constants of σ = 3 S/m and εr = 81. If the
magnitude of the electric field on the salt
water side of the interface is 10−3 V/m, find
the depth (in meters) inside the salt water at
which the magnitude of the electric field has
been reduced to 0.368 × 10−3 V/m.

5.31. At large observation distances, the field radi-
ated by a satellite antenna that is attempt-
ing to communicate with a submerged
submarine is locally TEM (also assume uni-
form plane wave), as shown in Figure P5-31.
Assuming the incident electric field before

er = 81

e0, m0

s = 1 S/m Submarine

Satellite

d

Figure P5-31

it impinges on the water is 1 mV/m and the
submarine is directly below the satellite, find
at 1 MHz the:
(a) Intensity of the reflected E field.
(b) SWR created in air.
(c) Incident and reflected power densities.
(d) Intensity of the transmitted E field.
(e) Intensity of the transmitted power den-

sity.
(f) Depth d (in meters) of the submarine

where the intensity of the transmitted
electric field is 0.368 of its value imme-
diately after it enters the water.

(g) Depth (in meters) of the submarine so
that the distance from the surface of
the ocean to the submarine is 20λ (λ
in water).

(h) Time (in seconds) it takes the wave to
travel from the surface of the ocean to
the submarine at a depth of 100 m.

(i) Ratio of velocity of the wave in water
to that in air (v/v0).

5.32. A uniform plane wave traveling inside a
good conductor with conductivity σ1 is inci-
dent normally on another good conductor
with conductivity σ2, where σ1 >σ2. Deter-
mine the ratio of σ1/σ2 so that the SWR
inside medium 1 near the interface is 1.5.

5.33. A right-hand circularly polarized uniform
plane wave traveling in air is incident nor-
mally on a flat and smooth water surface
with εr = 81 and σ = 0.1 S/m, as shown
in Figure P5-33. Assuming a frequency of
1 GHz and an incident electric field of

Water er = 81

s = 0.1 S/m

z

y

x

Reflected lncident

Figure P5-33

Ei = (ây + âz ejψ)E0ejβ0x

do the following.
(a) Determine the value of ψ .
(b) Write an expression for the correspond-

ing incident magnetic field.
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(c) Write expressions for the reflected elec-
tric and magnetic fields.

(d) Determine the polarization (including
sense of rotation) of the reflected wave.

(e) Write expressions for the transmitted
electric and magnetic fields.

(f) Determine the polarization (including
sense of rotation) of the transmitted
wave.

(g) Determine the percentage (compared to
the incident) of the reflected and trans-
mitted power densities.

5.34. A right-hand circularly polarized wave is
incident normally on a perfect conducting
flat surface (σ = ∞).
(a) What is the polarization and sense of

rotation of the reflected field?
(b) What is the normalized (maximum

unity) output voltage if the reflected
wave is received by a right-hand circu-
larly polarized antenna?

(c) Repeat part b if the receiving antenna is
left-hand circularly polarized.

5.35. Repeat Problem 5.34 if the reflecting sur-
face is water (f = 10 MHz, εr = 81 and
σ = 4 S/m).

5.36. A parallel polarized plane wave traveling
in a dielectric medium with ε1, μ1 is inci-
dent obliquely on a planar interface formed
by the dielectric medium with ε2, μ2 such
that ε2μ2 < ε1μ1. Assuming that the inci-
dent angle θi is equal to or greater than the
critical angle θc of (5-35b), derive expres-
sions for the reflection coefficient �b

|| and
transmission coefficient T b

|| , and the incident
Si

||, reflected Sr
||, and transmitted St

|| average
power densities respectively.

5.37. A perpendicularly polarized uniform plane
wave traveling inside a free-space medium
is obliquely incident, at an incident angle
θi = 60◦, upon a planar dielectric medium
with constitutive parameters of ε2 = 4ε0,
μ2 = μ0. Using Figure 5-2 as a reference
geometry, determine the:
(a) Wave impedance of the:

• Incident wave
• Reflected wave
• Transmitted wave

(b) Directional impedance in the +z and
+x directions, respectively, of the:
• Incident wave Z +z

to , Z +x
to

• Transmitted wave Z +z
t2 , Z +x

t2

(c) Reflection coefficient �+z
in in the +z

direction (magnitude and phase) inside
the free-space medium based on:
• The directional impedances
• An alternate equation
• Compare the two answers. Are the

answers the same or different in both
magnitude and phase? Should they be
the same or different in magnitude
and phase?

(d) SWR inside the free-space medium.

5.38. A uniform plane wave of either parallel or
perpendicular polarization, as shown respec-
tively in Figures 5-2 and 5-4, traveling
in free space is incident upon a dielec-
tric/magnetic material such that the product
of the relative permittivity and permeability
of the dielectric/magnetic material is much
greater than unity; that is

εrμr � 1

The intrinsic impedances of the two media
are, respectively, η0 (free space) and η

(dielectric/magnetic material).
(a) Determine an approximate value of the

refraction angle θt (in degrees) for:
1. Perpendicular polarization.
2. Parallel polarization.

(b) Obtain simplified expressions, in terms
η0 and η, of the Brewster angle θi = θB

for:
1. Perpendicular polarization.
2. Parallel polarization.

5.39. A dielectric slab of polystyrene (εr = 2.56),
of any thickness, is bounded on both of its
sides by air. In order to eliminate reflections
on each of its interfaces, the slab is cov-
ered on each of its faces with a dielectric
material.
At a frequency of 10 GHz, determine, for
each dielectric material that must cover each
of the faces of the slab, the:
(a) Thickness (in λi ; wavelength in the cor-

responding dielectric).
(b) Thickness (in cm).
(c) Dielectric constant.
(d) Intrinsic impedance of its medium.
(e) SWR created in air when a plane wave

impinges at normal incidence from one
of its sides when the slab is covered with
the selected cover material.

5.40. For Example 5-10, determine the bandwidth,
and the lower and upper frequencies of the
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bandwidth, over which the system can oper-
ate so that the magnitude of the reflection
coefficient is equal to:
(a) 0.05
(b) 0.10
Assume a center frequency of 10 GHz
within the bandwidth.

5.41. For the one-slab reflection problem of
Figure 5-11a , write the expressions for the:
(a) Exact transmission-line model.
(b) Exact ray-tracing model.
(c) Approximate ray-tracing model.
For Example 5-9, when d = 0.9375 cm, plot
the magnitude of the input reflection coeffi-
cient for 5 GHz ≤ f ≤ 15 GHz using the:
(d) Exact transmission line-model.
(e) Exact ray-tracing model.
(f) Approximate ray-tracing model.
For Example 5-10, when d = λ20/4 at
the center frequency f0 = 10 GHz, plot the
magnitude of the input reflection coefficient
for 5 GHz ≤ f ≤ 15 GHz using the:
(g) Exact transmission line-model.
(h) Exact ray-tracing model.
(i) Approximate ray-tracing model.

5.42. A dielectric slab of thickness d , as shown
in Figure 5-11a , is surrounded with air on
its left and with a dielectric material, whose
dielectric constant (relative permittivity) is
16, on its right. You are asked as an elec-
tromagnetic engineer/scientist to design a
dielectric slab with the smallest nonzero
thickness that will reduce the input reflec-
tion coefficient, at normal incidence, to zero
at a frequency of 1 GHz.
What should one set of parameters of the
dielectric slab be that will reduce the reflec-
tion coefficient to zero? State the:
(a) Smallest thickness of the slab in terms

of the wavelength in the dielectric slab.
(b) Smallest thickness of the slab, in cm, at

1 GHz.
(c) Dielectric constant of the dielectric

material of the slab.
Justify your answers. Assume that the per-
meability of all three media is the same as
free space.

5.43. A symmetrical three-layer dielectric slab is
bounded at both sides by air, and it is
designed to filter the signal that can pass
through it. The dielectric constant of all the
5 media, including the medium to the left
(air), the 3 slabs, and the medium to the

right (air) are, respectively, εr0 = 1, εr1 =
4, εr2 = 9, εr3 = 4, εr4 = 1.
Assuming that at the operating frequency
the width dm , n = 1, 2, 3, of each layer is
one quarter-of-a wavelength in its respective
medium, determine the:
(a) Corresponding intrinsic reflection coef-

ficients at each interface (�01, �12, �23,
�30).

(b) Approximate total input reflection coef-
ficient at the leading interface between
air and the first layer (�in) at the center
operating frequency.

5.44. A uniform plane wave traveling in air,
whose amplitude of the magnetic field is
Eo , is incident normally upon a perfect elec-
tric conductor that is coated with a lossless
dielectric material with ε = 4εo , μ = μo ,
σ = 0, and thickness of λ/8 (λ is the wave-
length in the dielectric). Just to the left of the
air side of the air-dielectric interface, deter-
mine the:
(a) Exact reflection coefficient looking nor-

mally just to the left of the air/dielectric
interface (z = −d−, i.e., toward the
conductor).

(b) SWR looking normally just to the left
of the air/dielectric interface (z = −d−,
i.e., toward the conductor).

Air
e = 4e0
m = m0
s = 0

z

Incident
PEC

Γin, SWR

Reflected
d = l/8

Figure P5-44

5.45. Two vertical lossless dielectric slabs, each of
thickness equal to λ0/4 at a center frequency
of f0 = 2 GHz, are sandwiched between a
lossless semi-infinite medium of dielectric
constant εr = 2.25 to the left and air to the
right. Assume a fractional bandwidth of 0.5
and a binomial design.
(a) Find the magnitude of the maximum

reflection coefficient within the allow-
able bandwidth.

(b) Determine the magnitude of the reflec-
tion coefficients at each interface (junc-
tion).
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(c) Compute the intrinsic impedances,
dielectric constants, and thickness (in
centimeters) of each dielectric slab.

(d) Determine the lower and upper frequen-
cies of the bandwidth.

(e) Plot the magnitude of the reflection
coefficient inside the dielectric medium
with εr = 2.25 as a function of fre-
quency (within 0 ≤ f /f0 ≤ 2).

5.46. It is desired to design a three-layer (each
layer of λ0/4 thickness) impedance trans-
former to match a semi-infinite dielectric
medium of εr = 9 on one of its sides and
one with εr = 2.25 on the other side. The
maximum SWR that can be tolerated inside
the dielectric medium with εr = 9 is 1.1.
Assume a center frequency of f0 = 3 GHz
and a binomial design.
(a) Determine the allowable fractional

bandwidth and the lower and upper fre-
quencies of the bandwidth.

(b) Find the magnitude of reflection coeffi-
cients at each junction.

(c) Compute the magnitude of the max-
imum reflection coefficient within the
bandwidth.

(d) Determine the intrinsic impedances,
dielectric constants, and thicknesses (in
centimeters) of each dielectric slab.

(e) Plot the magnitude of the reflection
coefficient inside the dielectric medium
with εr = 9 as a function of frequency
(within 0 ≤ f /f0 ≤ 2).

5.47. Repeat Example 5-11 using a Tschebyscheff
design.

5.48. Repeat Problem 5.45 using a Tschebyscheff
design.

5.49. Repeat Problem 5.46 using a Tschebyscheff
design.

5.50. A right-hand (CW) elliptically polarized
wave traveling in free space is obliquely
incident at an angle θi = 30◦, measured
from the normal, on a flat perfect electric
conductor of infinite extent. If the incident
field has an axial ratio of −2, determine the
polarization of the reflected field. This is to
include the axial ratio as well as its sense of
rotation. Assume that the time-phase differ-
ence between the components of the incident
field is 90◦.

5.51. Repeat Problem 5.50 if the reflecting surface
is a flat lossless (σ2 = 0) ocean (ε2 = 81ε0

and μ2 = μ0) of infinite extent. Also find
the polarization of the wave transmitted into
the water.

5.52. A uniform plane wave is normally inci-
dent upon a Perfect Electric Conductor
(PEC) medium. The incident electric field is
given by

Ei (z ) = (
âz + j 2ây

)
Eoe−jβo x

where βo and Eo are real constants. Assum-
ing a e+jωt time convention:
(a) Write an expression for the reflected

electric field.
(b) For the incident wave, determine the:

• Polarization (linear, circular, or ellip-
tical). Justify your answer.

• Sense of rotation of the incident wave
(CW or CCW). Justify your answer.

• Axial Ratio (AR). Justify your
answer.

(c) For the reflected wave, determine the:
• Polarization (linear, circular or ellip-

tical). Justify your answer.
• Sense of rotation of the incident wave

(CW or CCW). Justify your answer.
• Axial Ratio (AR). Justify your

answer.
For all of the above, be sure to justify
your answers. Verify with the MATLAB
computer program Polarization_Refl_-
Trans.

5.53. A uniform plane wave is normally incident
upon a Perfect Magnetic Conductor (PMC).
The incident electric field is given by

Ei (z ) = (2âx − j âz ) Eoe−jβo y

where βo and Eo are real constants. Assum-
ing a e+jωt time convention:
(a) Write an expression for the reflected

electric field.
(b) For the incident wave, determine the:

• Polarization (linear, circular, or ellip-
tical). Justify your answer.

• Sense of rotation of the incident wave
(CW or CCW). Justify your answer.

• Axial Ratio (AR). Justify your
answer.

(c) For the reflected wave, determine the:
• Polarization (linear, circular, or ellip-

tical). Justify your answer.
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• Sense of rotation of the incident wave
(CW or CCW). Justify your answer.

• Axial Ratio (AR). Justify your
answer.

For all of the above, be sure to jus-
tify your answers. Also verify with
MATLAB computer program Polariza-
tion_Refl_Trans.

5.54. A left-hand (CCW) circularly polarized
wave traveling inside a lossless earth, with
a dielectric constant of 9, is incident upon a
planar interface formed by the earth and air.
The angle of incidence is 18.43495◦. Deter-
mine the:
(a) Polarization of the reflected wave (lin-

ear, circular, elliptical).
(b) Sense of rotation of the reflected wave;

(CW or CCW), if appropriate.
(c) Polarization of the transmitted wave

(linear, circular, elliptical).
(d) Sense of rotation of the transmitted

wave; (CW, CCW), if appropriate.
As an option, you do not have to use too
many analytical equations as long as you can

justify the correct answers using words/text
(you can keep the formulations minimal).

Air
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Incident
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e = 9e0
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yx

Figure P5-54

5.55. Repeat Problem 5.54 when the incident
wave is right-hand (CW) circularly polar-
ized.

5.56. Derive the transmission coefficient for the
dielectric slab of Example 5-15.

5.57. For a planar interface formed by DPS-
DNG materials and assuming parallel polar-
ization wave incidence, write expressions
for the wavenumbers and Poynting vectors,
similar in form to the ones of Figure 5-
29, (5-110a) through (5-110c) and (5-111a)
through (5-111c). Examine the directions
of the wavenumbers and Poynting vectors
of the transmitted wave and compare with
those for a DPS-DPS interface.
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