
CHAPTER 3
Wave Equation and its Solutions

3.1 INTRODUCTION

The electromagnetic fields of boundary-value problems are obtained as solutions to Maxwell’s
equations, which are first-order partial differential equations. However, Maxwell’s equations are
coupled partial differential equations, which means that each equation has more than one unknown
field. These equations can be uncoupled only at the expense of raising their order. For each of the
fields, following such a procedure leads to an uncoupled second-order partial differential equation
that is usually referred to as the wave equation . Therefore electric and magnetic fields for a given
boundary-value problem can be obtained either as solutions to Maxwell’s or the wave equations.
The choice of equations is related to individual problems by convenience and ease of use. In
this chapter we will develop the vector wave equations for each of the fields, and then we will
demonstrate their solutions in the rectangular, cylindrical, and spherical coordinate systems.

3.2 TIME-VARYING ELECTROMAGNETIC FIELDS

The first two of Maxwell’s equations in differential form, as given by (1-1) and (1-2), are first-
order, coupled differential equations; that is, both the unknown fields (� and �) appear in each
equation. Usually it is very desirable, for convenience in solving for � and �, to uncouple these
equations. This can be accomplished at the expense of increasing the order of the differential
equations to second order. To do this, we repeat (1-1) and (1-2), that is,

∇ × � = −�i − μ
∂�

∂t
(3-1)

∇ × � = �i + σ� + ε
∂�

∂t
(3-2)

where it is understood in the remaining part of the book that σ represents the effective conductivity
σε and ε represents ε′. Taking the curl of both sides of each of equations 3-1 and 3-2 and assuming
a homogeneous medium, we can write that

∇ × ∇ × � = −∇ × �i − μ∇ ×
(

∂�

∂t

)
= −∇ × �i − μ

∂

∂t
(∇ × �) (3-3)

∇ × ∇ × � = ∇ × �i + σ∇ × � + ε∇ ×
(

∂�

∂t

)
= ∇ × �i + σ∇ × � + ε

∂

∂t
(∇ × �) (3-4)
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Substituting (3-2) into the right side of (3-3) and using the vector identity

∇ × ∇ × F = ∇(∇ • F) − ∇2F (3-5)

into the left side, we can rewrite (3-3) as

∇(∇ • �) − ∇2� = −∇ × �i − μ
∂

∂t

[
�i + σ� + ε

∂�

∂t

]
∇(∇ • �) − ∇2� = −∇ × �i − μ

∂�i

∂t
− μσ

∂�

∂t
− με

∂2�

∂t2
(3-6)

Substituting Maxwell’s equation 1-3, or

∇ • � = ε∇ • � = q
ev

⇒ ∇ • � = q
ev

ε
(3-7)

into (3-6) and rearranging its terms, we have that

∇2� = ∇ × �i + μ
∂�i

∂t
+ 1

ε
∇q

ev
+ μσ

∂�

∂t
+ με

∂2�

∂t2
(3-8)

which is recognized as an uncoupled second-order differential equation for �.
In a similar manner, by substituting (3-1) into the right side of (3-4) and using the vector

identity of (3-5) in the left side of (3-4), we can rewrite it as

∇(∇ • �) − ∇2� = ∇ × �i + σ

(
−�i − μ

∂�

∂t

)
+ ε

∂

∂t

(
−�i − μ

∂�

∂t

)
∇(∇ • �) − ∇2� = ∇ × �i − σ�i − μσ

∂�

∂t
− ε

∂�i

∂t
− με

∂2�

∂t2
(3-9)

Substituting Maxwell’s equation

∇ • � = μ∇ • � = q
mv

⇒ ∇ • � =
(

q
mv

μ

)
(3-10)

into (3-9), we have that

∇2� = −∇ × �i + σ�i + 1

μ
∇(q

mv
) + ε

∂�i

∂t
+ μσ

∂�

∂t
+ με

∂2�

∂t2
(3-11)

which is recognized as an uncoupled second-order differential equation for �. Thus (3-8) and
(3-11) form a pair of uncoupled second-order differential equations that are a by-product of
Maxwell’s equations as given by (1-1) through (1-4).

Equations 3-8 and 3-11 are referred to as the vector wave equations for � and �. For solving
an electromagnetic boundary-value problem, the equations that must be satisfied are Maxwell’s
equations as given by (1-1) through (1-4) or the wave equations as given by (3-8) and (3-11).
Often, the forms of the wave equations are preferred over those of Maxwell’s equations.
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For source-free regions (�i = q
ev

= 0 and �i = q
mv

= 0), the wave equations 3-8 and 3-11
reduce, respectively, to

∇2� = μσ
∂�

∂t
+ με

∂2�

∂t2
(3-12)

∇2� = μσ
∂�

∂t
+ με

∂2�

∂t2
(3-13)

For source-free (�i = q
ev

= 0 and �i = q
mv

= 0) and lossless media (σ = 0), the wave
equations 3-8 and 3-11 or 3-12 and 3-13 simplify to

∇2� = με
∂2�

∂t2
(3-14)

∇2� = με
∂2�

∂t2
(3-15)

Equations 3-14 and 3-15 represent the simplest forms of the vector wave equations.

3.3 TIME-HARMONIC ELECTROMAGNETIC FIELDS

For time-harmonic fields (time variations of the form ejωt ), the wave equations can be derived
using a similar procedure as in Section 3.2 for the general time-varying fields, starting with
Maxwell’s equations as given in Table 1-4. However, instead of going through this process, we
find, by comparing Maxwell’s equations for the general time-varying fields with those for the
time-harmonic fields (both are displayed in Table 1-4), that one set can be obtained from the
other by replacing ∂/∂t ≡ jω, ∂2/∂t2 ≡ (jω)2 = −ω2, and the instantaneous fields (�, �, �, �),
respectively, with the complex fields (E, H, D, B) and vice versa. Doing this for the wave equations
3-8, 3-11, 3-12, and 3-13, we can write each, respectively, as

∇2E = ∇ × Mi + jωμJi + 1

ε
∇qev + jωμσE − ω2μεE

∇2H = −∇ × Ji + σMi + jωεMi + 1

μ
∇qmv + jωμσH − ω2μεH

(3-16a)

(3-16b)

∇2E = jωμσE − ω2μεE = γ 2E

∇2H = jωμσH − ω2μεH = γ 2H

(3-17a)

(3-17b)

where

γ 2 = jωμσ − ω2με = jωμ(σ + jωε) (3-17c)

γ = α + jβ = propagation constant (3-17d)

α = attenuation constant (Np/m) (3-17e)

β = phase constant (rad/m) (3-17f)
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The constants α, β, and γ will be discussed in more detail in Section 4.3 where α and β are
expressed by (4-28c) and (4-28d) in terms of ω, ε, μ, and σ .

Similarly (3-14) and (3-15) can be written, respectively, as

∇2E = −ω2μεE = −β2E

∇2H = −ω2μεH = −β2H

(3-18a)

(3-18b)

where
β2 = ω2με (3-18c)

In the literature the phase constant β is also represented by k .

3.4 SOLUTION TO THE WAVE EQUATION

The time variations of most practical problems are of the time-harmonic form. Fourier series can
be used to express time variations of other forms in terms of a number of time-harmonic terms.
Electromagnetic fields associated with a given boundary-value problem must satisfy Maxwell’s
equations or the vector wave equations. For many cases, the vector wave equations reduce to a
number of scalar Helmholtz (wave) equations, and the general solutions can be constructed once
solutions to each of the scalar Helmholtz equations are found.

In this section we want to demonstrate at least one method that can be used to solve the scalar
Helmholtz equation in rectangular, cylindrical, and spherical coordinates. The method is known as
the separation of variables [1, 2], and the general solution to the scalar Helmholtz equation using
this method can be constructed in 11 three-dimensional orthogonal coordinate systems (including
the rectangular, cylindrical, and spherical systems) [3].

The solutions for the instantaneous time-harmonic electric and magnetic field intensities can
be obtained by considering the forms of the vector wave equations given either in Section 3.2 or
Section 3.3. The approach chosen here will be to use those of Section 3.3 to solve for the complex
field intensities E and H first. The corresponding instantaneous quantities can then be formed
using the relations (1-61a) through (1-61f) between the instantaneous time-harmonic fields and
their complex counterparts.

3.4.1 Rectangular Coordinate System

In a rectangular coordinate system, the vector wave equations 3-16a through 3-18c can be reduced
to three scalar wave (Helmholtz) equations. First, we will consider the solutions for source-free
and lossless media. This will be followed by solutions for source-free but lossy media.

A. Source-Free and Lossless Media For source-free (Ji = Mi = qve = qvm = 0) and loss-
less (σ = 0) media, the vector wave equations for the complex electric and magnetic field
intensities are those given by (3-18a) through (3-18c). Since (3-18a) and (3-18b) are of the
same form, let us examine the solution to one of them. The solution to the other can then be
written by an interchange of E with H or H with E. We will begin by examining the solution
for E.

In rectangular coordinates, a general solution for E can be written as

E(x , y , z ) = âx Ex (x , y , z ) + ây Ey(x , y , z ) + âz Ez (x , y , z ) (3-19)
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Figure 3-1 Rectangular coordinate system and corresponding unit vectors.

where x , y , z are the rectangular coordinates, as illustrated in Figure 3-1. Substituting (3-19) into
(3-18a) we can write that

∇2E + β2E = ∇2(âx Ex + ây Ey + âz Ez
) + β2(âx Ex + ây Ey + âz Ez

) = 0 (3-20)

which reduces to three scalar wave equations of

∇2Ex (x , y , z ) + β2Ex (x , y , z ) = 0 (3-20a)

∇2Ey(x , y , z ) + β2Ey(x , y , z ) = 0 (3-20b)

∇2Ez (x , y , z ) + β2Ez (x , y , z ) = 0 (3-20c)

because
∇2(âx Ex + ây Ey + âz Ez

) = âx∇2Ex + ây∇2Ey + âz ∇2Ez (3-21)

Equations 3-20a through 3-20c are all of the same form; once a solution of any one of them is
obtained, the solutions to the others can be written by inspection. We choose to work first with
that for Ex as given by (3-20a).

In expanded form (3-20a) can be written as

∇2Ex + β2Ex = ∂2Ex

∂x 2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z 2
+ β2Ex = 0 (3-22)

Using the separation-of-variables method , we assume that a solution for Ex (x , y , z ) can be written
in the form of

Ex (x , y , z ) = f (x)g(y)h(z ) (3-23)

where the x , y , z variations of Ex are separable (hence the name). If any inconsistencies are
encountered with assuming such a form of solution, another form must be attempted. This is the
procedure usually followed in solving differential equations. Substituting (3-23) into (3-22), we
can write that

gh
∂2f

∂x 2
+ fh

∂2g

∂y2
+ fg

∂2h

∂z 2
+ β2fgh = 0 (3-24)
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Since f (x), g(y), and h(z ) are each a function of only one variable, we can replace the partials
in (3-24) by ordinary derivatives. Doing this and dividing each term by fgh , we can write that

1

f

d2f

dx 2
+ 1

g

d2g

dy2
+ 1

h

d2h

dz 2
+ β2 = 0 (3-25)

or
1

f

d2f

dx 2
+ 1

g

d2g

dy2
+ 1

h

d2h

dz 2
= −β2 (3-25a)

Each of the first three terms in (3-25a) is a function of only a single independent variable;
hence the sum of these terms can equal −β2 only if each term is a constant. Thus (3-25a) separates
into three equations of the form

1

f

d2f

dx 2
= −β2

x ⇒ d2f

dx 2
= −β2

x f (3-26a)

1

g

d2g

dy2
= −β2

y ⇒ d2g

dy2
= −β2

y g (3-26b)

1

h

d2h

dz 2
= −β2

z ⇒ d2h

dz 2
= −β2

z h (3-26c)

where, in addition,
β2

x + β2
y + β2

z = β2 (3-27)

Equation 3-27 is referred to as the constraint (dispersion) equation. In addition βx , βy , βz are
known as the wave constants (numbers) in the x , y , z directions, respectively, that will be
determined using boundary conditions.

The solution to each of (3-26a), (3-26b), or (3-26c) can take different forms. Some typical
valid solutions for f (x) of (3-26a) would be

f1(x) = A1e−jβx x + B1e+jβx x (3-28a)

or
f2(x) = C1 cos(βx x) + D1 sin(βx x) (3-28b)

Similarly the solutions to (3-26b) and (3-26c) for g(y) and h(z ) can be written, respectively, as

g1(y) = A2e−jβy y + B2e+jβy y (3-29a)

or
g2(y) = C2 cos(βy y) + D2 sin(βy y) (3-29b)

and
h1(z ) = A3e−jβz z + B3e+jβz z (3-30a)

or
h2(z ) = C3 cos(βz z ) + D3 sin(βz z ) (3-30b)

Although all the aforementioned solutions are valid for f (x), g(y), and h(z ), the most appro-
priate form should be chosen to simplify the complexity of the problem at hand. In general, the
solutions of (3-28a), (3-29a), and (3-30a) in terms of complex exponentials represent traveling
waves and the solutions of (3-28b), (3-29b), and (3-30b) represent standing waves . Wave func-
tions representing various wave types in rectangular coordinates are found listed in Table 3-1. In
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TABLE 3-1 Wave functions, zeroes, and infinities of plane wave functions in rectangular
coordinates

Wave Wave Zeroes of Infinities of
type functions wave functions wave functions

Traveling
waves

e−jβx for + x travel
e+jβx for − x travel

βx → −j∞
βx → +j∞

βx → +j∞
βx → −j∞

Standing
waves

cos(βx) for ± x
sin(βx) for ± x

βx = ±(
n + 1

2

)
π

βx = ±nπ

n = 0, 1, 2, . . .

βx → ±j∞
βx → ±j∞

Evanescent
waves

e−αx for + x
e+αx for − x
cosh(αx) for ± x
sinh(αx) for ± x

αx → +∞
αx → −∞
αx = ±j

(
n + 1

2

)
π

αx = ±jnπ

n = 0, 1, 2, . . .

αx → −∞
αx → +∞
αx → ±∞
αx → ±∞

Attenuating
traveling
waves

e−γ x = e−αx e−jβx for + x travel
e+γ x = e+αx e+jβx for − x travel

γ x → +∞
γ x → −∞

γ x → −∞
γ x → +∞

Attenuating
standing
waves

cos(γ x) = cos(αx) cosh(βx)

− j sin(αx) sinh(βx)

for ± x
sin(γ x) = sin(αx) cosh(βx)

+ j cos(αx) sinh(βx)

for ± x

γ x = ±j
(
n + 1

2

)
π

γ x = ±jnπ

n = 0, 1, 2, . . .

γ x → ±j∞

γ x → ±j∞

Chapter 8 we will consider specific examples and the appropriate solution forms for f (x), g(y),
and h(z ).

Once the appropriate forms for f (x), g(y), and h(z ) have been decided, the solution for the
scalar function Ex (x , y , z ) of (3-22) can be written as the product of fgh as stated by (3-23).
To demonstrate that, let us consider a specific example in which it will be assumed that the
appropriate solutions for f , g , and h are given, respectively, by (3-28b), (3-29b), and (3-30a).
Thus we can write that

Ex (x , y , z ) = [
C1 cos(βx x) + D1 sin(βx x)

][
C2 cos(βy y) + D2 sin(βy y)

]
×[

A3e−jβz z + B3e+jβz z
]

(3-31)

This is an appropriate solution for any of the electric or magnetic field components inside a
rectangular pipe (waveguide), shown in Figure 3-2, that is bounded in the x and y directions
and has its length along the z axis. Because the waveguide is bounded in the x and y directions,
standing waves, represented by cosine and sine functions, have been chosen as solutions for f (x)

and g(y) functions. However, because the waveguide is not bounded in the z direction, traveling
waves, represented by complex exponential functions, have been chosen as solutions for h(z ). A
complete discussion of the fields inside a rectangular waveguide can be found in Chapter 8.

For ejωt time variations, which are assumed throughout this book, the first complex exponential
term in (3-31) represents a wave that travels in the +z direction; the second exponential represents
a wave that travels in the −z direction. To demonstrate this, let us examine the instantaneous form
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Figure 3-2 Rectangular waveguide geometry.

�x (x , y , z ; t) of the scalar complex function Ex (x , y , z ). Since the solution of (3-31) represents
the complex form of Ex , its instantaneous form can be written as

�x (x , y , z ; t) = Re
[
Ex (x , y , z )ejωt

]
(3-32)

Considering only the first exponential term of (3-31) and assuming all constants are real, we can
write the instantaneous form of the �x function for that term as

�+
x (x , y , z ; t) = Re

[
E+

x (x , y , z )ejωt
]

= Re
{[

C1 cos(βx x) + D1 sin(βx x)
]

×[
C2 cos(βy y) + D2 sin(βy y)

]
A3ej (ωt−βz z )

}
(3-33)

or, if the constants C1, D1, C2, D2, and A3 are real, as

�+
x (x , y , z ; t) = [

C1 cos(βx x) + D1 sin(βx x)
]

×[
C2 cos(βy y) + D2 sin(βy y)

]
A3 cos(ωt − βz z ) (3-33a)

where the superscript plus is used to denote a positive traveling wave.
A plot of the normalized �+

x (x , y , z ; t) as a function of z for different times
(t = t0, t1, . . . , tn , tn+1) is shown in Figure 3-3. It is evident that as time increases (tn+1 > tn),
the waveform of �+

x is essentially the same, with the exception of an apparent shift in the +z
direction indicating a wave traveling in the +z direction. This shift in the +z direction can also
be demonstrated by examining what happens to a given point zp in the waveform of �+

x for
t = t0, t1, . . . , tn , tn+1. To follow the point zp for different values of t , we must maintain constant
the amplitude of the last cosine term in (3-33a). This is accomplished by keeping its argument
ωt − βz zp constant, that is,

ωt − βz zp = C0 = constant (3-34)

which when differentiated with respect to time reduces to

ω(1) − βz
dzp

dt
= 0 ⇒ dzp

dt
= vp = + ω

βz
(3-35)
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Figure 3-3 Variations as a function of distance for different times of positive traveling wave.
time t0 = 0; – – – – time t1 = T/8; ---- time t2 = T/4.

The point zp is referred to as an equiphase point and its velocity is denoted as the phase
velocity . A similar procedure can be used to demonstrate that the second complex exponential
term in (3-31) represents a wave that travels in the −z direction.

B. Source-Free and Lossy Media When the media in which the waves are traveling are
lossy (σ �= 0) but source-free (Ji = Mi = qve = qvm = 0), the vector wave equations that the
complex electric E and magnetic H field intensities must satisfy are (3-17a) and (3-17b). As for
the lossless case, let us examine the solution to one of them; the solution to the other can then be
written by inspection once the solution to the first has been obtained. We choose to consider the
solution for the electric field intensity E, which must satisfy (3-17a). An extended presentation
of electromagnetic wave propagation in lossy media can be found in [4].

In a rectangular coordinate system, the general solution for E(x , y , z ) can be written as

E(x , y , z ) = âx Ex (x , y , z ) + ây Ey(x , y , z ) + âz Ez (x , y , z ) (3-36)

When (3-36) is substituted into (3-17a), we can write that

∇2E − γ 2E = ∇2(âx Ex + ây Ey + âz Ez
) − γ 2(âx Ex + ây Ey + âz Ez

) = 0 (3-37)

which reduces to three scalar wave equations of

∇2Ex (x , y , z ) − γ 2Ex (x , y , z ) = 0 (3-37a)

∇2Ey(x , y , z ) − γ 2Ey(x , y , z ) = 0 (3-37b)

∇2Ez (x , y , z ) − γ 2Ez (x , y , z ) = 0 (3-37c)

where
γ 2 = jωμ(σ + jωε) (3-37d)

If we were to allow for positive and negative values of σ

γ = ±
√

jωμ(σ + jωε) =
{

±(α + jβ) for + σ

±(α − jβ) for − σ
(3-37e)
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In (3-37e),

γ = propagation constant

α = attenuation constant (Np/m)

β = phase constant (rad/m)

where α and β are assumed to be real and positive. Although some authors choose to represent
the phase constant by k , the symbol β will be used throughout this book.

Examining (3-37e) reveals that there are four possible combinations for the form of γ . That is,

γ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+(α + jβ)

−(α + jβ)

+(α − jβ)

−(α − jβ)

(3-38a)

(3-38b)

(3-38c)

(3-38d)

Of the four combinations, only one will be appropriate for our solution. That form will be selected
once the solutions to any of (3-37a) through (3-37c) have been decided.

Since all three equations represented by (3-37a) through (3-37c) are of the same form, let us
examine only one of them. We choose to work first with (3-37a) whose solution can be derived
using the method of separation of variables . Using a similar procedure as for the lossless case,
we can write that

Ex (x , y , z ) = f (x)g(y)h(z ) (3-39)

where it can be shown that f (x) has solutions of the form

f1(x) = A1e−γx x + B1e+γx x (3-40a)

or
f2(x) = C1 cosh(γx x) + D1 sinh(γx x) (3-40b)

and g(y) can be expressed as
g1(y) = A2e−γy y + B2e+γy y (3-41a)

or
g2(y) = C2 cosh(γy y) + D2 sinh(γy y) (3-41b)

and h(z ) as
h1(z ) = A3e−γz z + B3e+γz z (3-42a)

or
h2(z ) = C3 cosh(γz z ) + D3 sinh(γz z ) (3-42b)

Whereas (3-40a) through (3-42b) are appropriate solutions for f , g , and h of (3-39), which
satisfy (3-37a), the constraint (dispersion) equation takes the form of

γ 2
x + γ 2

y + γ 2
z = γ 2 (3-43)

The appropriate forms of f , g , and h chosen to represent the solution of Ex (x , y , z ), as given by
(3-39), must be made by examining the geometry of the problem in question. As for the lossless
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case, the exponentials represent attenuating traveling waves and the hyperbolic cosines and sines
represent attenuating standing waves. These and other waves types are listed in Table 3-1.

To decide on the appropriate form for any of the γ ’s (whether it be γx , γy , γz , or γ ), let us
choose the form of γz by examining one of the exponentials in (3-42a). We choose to work with
the first one. The four possible combinations for γz , according to (3-38a) through (3-38d) will
be

γz =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+(αz + jβz )

−(αz + jβz )

+(αz − jβz )

−(αz − jβz )

(3-44a)

(3-44b)

(3-44c)

(3-44d)

If we want the first exponential in (3-42a) to represent a decaying wave which travels in the
+z direction, then by substituting (3-44a) through (3-44d) into it we can write that

h+
1 (z ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A3e−γz z = A3e−αz z e−jβz z

A3e−γz z = A3e+αz z e+jβz z

A3e−γz z = A3e−αz z e+jβz z

A3e−γz z = A3e+αz z e−jβz z

(3-45a)

(3-45b)

(3-45c)

(3-45d)

By examining (3-45a) through (3-45d) and assuming ejωt time variations, the following state-
ments can be made:

1. Equation 3-45a represents a wave that travels in the +z direction, as determined by e−jβz z ,
and it decays in that direction, as determined by e−αz z .

2. Equation 3-45b represents a wave that travels in the −z direction, as determined by e+jβz z ,
and it decays in that direction, as determined by e+αz z .

3. Equation 3-45c represents a wave that travels in the −z direction, as determined by e+jβz z ,
and it is increasing in that direction, as determined by e−αz z .

4. Equation 3-45d represents a wave that travels in the +z direction, as determined by e−jβz z ,
and it is increasing in that direction, as determined by e+αz z .

From the preceding statements it is apparent that for e−γz z to represent a wave that travels in the
+z direction and that concurrently also decays (to represent propagation in passive lossy media),
and to satisfy the conservation of energy laws, the only correct form of γz is that of (3-44a). The
same conclusion will result if the second exponential of (3-42a) represents a wave that travels in
the −z direction and that concurrently also decays. Thus the general form of any γi (whether it
be γx , γy , γz , or γ ), as given by (3-38a) through (3-38d), is

γi = αi + jβi (3-46)

Whereas the forms of f , g , and h [as given by (3-40a) through (3-42b)] are used to arrive
at the solution for the complex form of Ex as given by (3-39), the instantaneous form of �x

can be obtained by using the relation of (3-32). A similar procedure can be used to derive the
solutions of the other components of E (Ey and Ez ), all those of H (Hx , Hy , and Hz ), and of their
instantaneous counterparts.
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3.4.2 Cylindrical Coordinate System

If the geometry of the system is of a cylindrical configuration, it would be very advisable to
solve the boundary-value problem for the E and H fields using cylindrical coordinates. Maxwell’s
equations and the vector wave equations, which the E and H fields must satisfy, should be solved
using cylindrical coordinates. Let us first consider the solution for E for a source-free and lossless
medium. A similar procedure can be used for H. To maintain some simplicity in the mathematics,
we will examine only lossless media.

In cylindrical coordinates a general solution to the vector wave equation for source-free and
lossless media, as given by (3-18a), can be written as

E(ρ, φ, z ) = âρEρ(ρ, φ, z ) + âφEφ(ρ, φ, z ) + âz Ez (ρ, φ, z ) (3-47)

where ρ, φ, and z are the cylindrical coordinates as illustrated in Figure 3-4. Substituting (3-47)
into (3-18a), we can write that

∇2(âρEρ + âφEφ + âz Ez ) = −β2(âρEρ + âφEφ + âz Ez ) (3-48)

which does not reduce to three simple scalar wave equations, similar to those of (3-20a) through
(3-20c) for (3-20), because

∇2(âρEρ) �= âρ∇2Eρ (3-49a)

∇2(âφEφ) �= âφ∇2Eφ (3-49b)

However, because
∇2(âz Ez ) = âz ∇2Ez (3-49c)

one of the three scalar equations to which (3-48) reduces is

∇2Ez + β2Ez = 0 (3-50)

The other two are of more complex form and they will be addressed in what follows.
Before we derive the other two scalar equations [in addition to (3-50)] to which (3-48) reduces,

let us attempt to give a physical explanation of (3-49a), (3-49b), and (3-49c). By examining two
different points (ρ1, φ1, z1) and (ρ2, φ2, z2) and their corresponding unit vectors on a cylindrical
surface (as shown in Figure 3-4), we see that the directions of âρ and âφ have changed from one
point to another (they are not parallel) and therefore cannot be treated as constants but rather are
functions of ρ, φ, and z . In contrast, the unit vector âz at the two points is pointed in the same
direction (is parallel). The same is true for the unit vectors âx and ây in Figure 3-1.

Let us now return to the solution of (3-48). Since (3-48) does not reduce to (3-49a) and (3-
49b), although it does satisfy (3-49c), how do we solve (3-48)? The procedure that follows can
be used to reduce (3-48) to three scalar partial differential equations.

The form of (3-48) written in general as

∇2E = −β2E (3-51)

was placed in this form by utilizing the vector identity of (3-5) during its derivation. Generally
we are under the impression that we do not know how to perform the Laplacian of a vector
(∇2E) as given by the left side of (3-51). However, by utilizing (3-5) we can rewrite the left
side of (3-51) as

∇2E = ∇(∇ • E) − ∇ × ∇ × E (3-52)
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Figure 3-4 Cylindrical coordinate system and corresponding unit vectors.

whose terms can be expanded in any coordinate system. Using (3-52) we can write (3-51) as

∇(∇ • E) − ∇ × ∇ × E = −β2E (3-53)

which is an alternate form, but not as commonly recognizable, of the vector wave equation for
the electric field in source-free and lossless media.

Assuming a solution for the electric field of the form given by (3-47), we can expand (3-53)
and reduce it to three scalar partial differential equations of the form

∇2Eρ +
(

−Eρ

ρ2
− 2

ρ2

∂Eφ

∂φ

)
= −β2Eρ (3-54a)

∇2Eφ +
(

−Eφ

ρ2
+ 2

ρ2

∂Eρ

∂φ

)
= −β2Eφ (3-54b)

∇2Ez = −β2Ez (3-54c)

In each of (3-54a) through (3-54c) ∇2ψ(ρ, φ, z ) is the Laplacian of a scalar that in cylindrical
coordinates takes the form of

∇2ψ(ρ, φ, z ) = 1

ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2

= ∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
(3-55)

Equations 3-54a and 3-54b are coupled (each contains more than one electric field component)
second-order partial differential equations, which are the most difficult to solve. However, (3-54c)
is an uncoupled second-order partial differential equation whose solution will be most useful in
the construction of TEz and TMz mode solutions of boundary-value problems, as discussed in
Chapters 6 and 9.
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In expanded form (3-54c) can then be written as

∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
= −β2ψ (3-56)

where ψ(ρ, φ, z ) is a scalar function that can represent a field or a vector potential component.
Assuming a separable solution for ψ(ρ, φ, z ) of the form

ψ(ρ, φ, z ) = f (ρ)g(φ)h(z ) (3-57)

and substituting it into (3-56), we can write that

gh
∂2f

∂ρ2
+ gh

1

ρ

∂f

∂ρ
+ fh

1

ρ2

∂2g

∂φ2
+ fg

∂2h

∂z 2
= −β2fgh (3-58)

Dividing both sides of (3-58) by fgh and replacing the partials by ordinary derivatives reduces
(3-58) to

1

f

d2f

dρ2
+ 1

f

1

ρ

df

dρ
+ 1

g

1

ρ2

d2g

dφ2
+ 1

h

d2h

dz 2
= −β2 (3-59)

The last term on the left side of (3-59) is only a function of z . Therefore, using the discussion
of Section 3.4.1, we can write that

1

h

d2h

dz 2
= −β2

z ⇒ d2h

dz 2
= −β2

z h (3-60)

where βz is a constant. Substituting (3-60) into (3-59) and multiplying both sides by ρ2, reduces
it to

ρ2

f

d2f

dρ2
+ ρ

f

df

dρ
+ 1

g

d2g

dφ2
+ (β2 − β2

z )ρ2 = 0 (3-61)

Since the third term on the left side of (3-61) is only a function of φ, it can be set equal to a
constant −m2. Thus we can write that

1

g

d2g

dφ2
= −m2 ⇒ d2g

dφ2
= −m2g (3-62)

Letting

β2 − β2
z = β2

ρ ⇒ β2
ρ + β2

z = β2 (3-63)

then using (3-62), and multiplying both sides of (3-61) by f , we can reduce (3-61) to

ρ2 d2f

dρ2
+ ρ

df

dρ
+ [

(βρρ)2 − m2] f = 0 (3-64)

Equation 3-63 is referred to as the constraint (dispersion) equation for the solution to the wave
equation in cylindrical coordinates, and (3-64) is recognized as the classic Bessel differential
equation [1–3, 5–10].

In summary then, the partial differential equation 3-56 whose solution was assumed to be
separable of the form given by (3-57) reduces to the three differential equations 3-60, 3-62, 3-64
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and the constraint equation 3-63. Thus

∇2ψ(ρ, φ, z ) = ∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ 1

ρ2

∂2ψ

∂φ2
+ ∂2ψ

∂z 2
= −β2ψ (3-65)

where
ψ(ρ, φ, z ) = f (ρ)g(φ)h(z ) (3-65a)

reduces to

ρ2 d2f

dρ2
+ ρ

df

dρ
+ [

(βρρ)2 − m2] f = 0 (3-66a)

d2g

dφ2
= −m2g (3-66b)

d2h

dz 2
= −β2

z h (3-66c)

with

β2
ρ + β2

z = β2 (3-66d)

Solutions to (3-66a), (3-66b), and (3-66c) take the form, respectively, of

f1(ρ) = A1Jm(βρρ) + B1Ym(βρρ) (3-67a)

or
f2(ρ) = C1H (1)

m (βρρ) + D1H (2)
m (βρρ) (3-67b)

and
g1(φ) = A2e−jmφ + B2e+jmφ (3-68a)

or
g2(φ) = C2 cos(mφ) + D2 sin(mφ) (3-68b)

and
h1(z ) = A3e−jβz z + B3e+jβz z (3-69a)

or
h2(z ) = C3 cos(βz z ) + D3 sin(βz z ) (3-69b)

In (3-67a) Jm(βρρ) and Ym(βρρ) represent, respectively, the Bessel functions of the first and
second kind; H (1)

m (βρρ) and H (2)
m (βρρ) in (3-67b) represent, respectively, the Hankel functions

of the first and second kind. A more detailed discussion of Bessel and Hankel functions is found
in Appendix IV.

Although (3-67a) through (3-69b) are valid solutions for f (ρ), g(φ), and h(z ), the most appro-
priate form will depend on the problem in question. For example, for the cylindrical waveguide of



114 WAVE EQUATION AND ITS SOLUTIONS

z

a r f

y

x

Figure 3-5 Cylindrical waveguide of the circular cross section.

Figure 3-5 the most convenient solutions for f (ρ), g(φ), and h(z ) are those given, respectively,
by (3-67a), (3-68b), and (3-69a). Thus we can write

ψ1(ρ, φ, z ) = f (ρ)g(φ)h(z )

= [
A1Jm(βρρ) + B1Ym(βρρ)

]
×[C2 cos(mφ) + D2 sin(mφ)]

[
A3e−jβz z + B3e+jβz z

]
(3-70)

These forms for f (ρ), g(φ), and h(z ) were chosen in cylindrical coordinates for the following
reasons.

1. Bessel functions of (3-67a) are used to represent standing waves, whereas Hankel functions
of (3-67b) represent traveling waves.

2. Exponentials of (3-68a) represent traveling waves, whereas the cosines and sines of (3-68b)
represent periodic waves.

3. Exponentials of (3-69a) represent traveling waves, whereas the cosines and sines of (3-69b)
represent standing waves.

Wave functions representing various radial waves in cylindrical coordinates are found listed in
Table 3-2.

Within the circular waveguide of Figure 3-5 standing waves are created in the radial (ρ)

direction, periodic waves in the phi (φ) direction, and traveling waves in the z direction. For the
fields to be finite at ρ = 0, where Ym(βρρ) possesses a singularity, (3-70) reduces to

ψ1(ρ, φ, z ) = A1Jm(βρρ)[C2 cos(mφ) + D2 sin(mφ)]
[
A3e−jβz z + B3e+jβz z

]
(3-70a)

To represent the fields in the region outside the cylinder, like scattering by the cylinder, a
typical solution for ψ(ρ, φ, z ) would take the form of

ψ2(ρ, φ, z ) = B1H (2)
m (βρρ)[C2 cos(mφ) + D2 sin(mφ)]

[
A3e−jβz z + B3e+jβz z

]
(3-70b)
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TABLE 3-2 Wave functions, zeroes, and infinities for radial wave functions in cylindrical
coordinates

Infinities
Wave Wave Zeroes of of wave
type functions wave functions functions

Traveling
waves

H (1)
m (βρ) = Jm(βρ) + jYm(βρ)

for −ρ travel
H (2)

m (βρ) = Jm(βρ) − jYm(βρ)

for +ρ travel

βρ → +j∞

βρ → −j∞

βρ = 0
βρ → −j∞
βρ = 0
βρ → +j∞

Standing
waves

Jm(βρ) for ± ρ

Ym(βρ) for ± ρ

Infinite number
(see Table 9-2)
Infinite number

βρ → ±j∞

βρ = 0
βρ → ±j∞

Evanescent
waves

Km(αρ) = π

2
(−j )m+1H (2)

m (−jαρ)

for + ρ

Im(αρ) = j m Jm(−jαρ) for − ρ

αρ → +∞ αρ → 0
αρ → +∞
for integer orders

Attenuating
traveling
waves

H (1)
m (−jγρ) = H (1)

m (−jαρ + βρ)

for − ρ travel
H (2)

m (−jγρ) = H (2)
m (−jαρ + βρ)

for + ρ travel

γρ → −∞

γρ → +∞

γρ → +∞

γρ → −∞

Attenuating
standing
waves

Jm(−jγρ) = Jm(−jαρ + βρ) for ±ρ

Ym(−jγρ) = Ym(−jαρ + βρ) for ± ρ

Infinite number
Infinite number

γρ → ±j∞
γρ → ±j∞

whereby the Hankel function of the second kind H (2)
m (βρρ) has replaced the Bessel function

of the first kind Jm(βρρ) because outward traveling waves are formed outside the cylinder, in
contrast to the standing waves inside the cylinder.

More details concerning the application and properties of Bessel and Hankel function can be
found in Chapters 9 and 11.

3.4.3 Spherical Coordinate System

Spherical coordinates should be utilized in solving problems that exhibit spherical geometries.
As for the rectangular and cylindrical geometries, the electric and magnetic fields of a spherical
geometry boundary-value problem must satisfy the corresponding vector wave equation, which
is most conveniently solved in spherical coordinates as illustrated in Figure 3-6.

To simplify the problem, let us assume that the space in which the electric and magnetic fields
must be solved is source-free and lossless. A general solution for the electric field can then be
written as

E(r , θ , φ) = âr Er (r , θ , φ) + âθEθ (r , θ , φ) + âφEφ(r , θ , φ) (3-71)

Substituting (3-71) into the vector wave equation of (3-18a), we can write that

∇2(âr Er + âθEθ + âφEφ) = −β2(âr Er + âθEθ + âφEφ) (3-72)
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Figure 3-6 Spherical coordinate system and corresponding unit vectors.

Since

∇2(âr Er ) �= âr∇2Er (3-73a)

∇2(âθEθ ) �= âθ∇2Eθ (3-73b)

∇2(âφEφ) �= âφ∇2Eφ (3-73c)

(3-72) does not reduce to three simple scalar wave equations, similar to those of (3-20a) through
(3-20c) for (3-20). Therefore the reduction of (3-72) to three scalar partial differential equations
must proceed in a different manner. In fact, the method used here will be similar to that utilized
in cylindrical coordinates to reduce the vector wave equation to three scalar partial differential
equations.

To accomplish this, we first rewrite the vector wave equation of (3-51) in a form given by
(3-53) where now all the operators on the left side can be performed in any coordinate system.
Substituting (3-71) into (3-53) shows that, after some lengthy mathematical manipulations, (3-53)
reduces to three scalar partial differential equations of the form

∇2Er − 2

r2

(
Er + Eθ cot θ + csc θ

∂Eφ

∂φ
+ ∂Eθ

∂θ

)
= −β2Er (3-74a)

∇2Eθ − 1

r2

(
Eθ csc2 θ − 2

∂Er

∂θ
+ 2 cot θ csc θ

∂Eφ

∂φ

)
= −β2Eθ (3-74b)

∇2Eφ − 1

r2

(
Eφ csc2 θ − 2 csc θ

∂Er

∂φ
− 2 cot θ csc θ

∂Eθ

∂φ

)
= −β2Eφ (3-74c)

Unfortunately, all three of the preceding partial differential equations are coupled. This means
each contains more than one component of the electric field and would be most difficult to solve
in its present form. However, as will be shown in Chapter 10, TEr and TMr wave mode solutions
can be formed that in spherical coordinates must satisfy the scalar wave equation of

∇2ψ(r , θ , φ) = −β2ψ(r , θ , φ) (3-75)
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where ψ(r , θ , φ) is a scalar function that can represent a field or a vector potential compo-
nent. Therefore, it would be advisable here to demonstrate the solution to (3-75) in spherical
coordinates.

Assuming a separable solution for ψ(r , θ , φ) of the form

ψ(r , θ , φ) = f (r)g(θ)h(φ) (3-76)

we can write the expanded form of (3-75)

1

r2

∂

∂r

{
r2 ∂ψ

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂ψ

∂θ

}
+ 1

r2 sin2 θ

∂2ψ

∂φ2
= −β2ψ (3-77)

as

gh
1

r2

∂

∂r

{
r2 ∂f

∂r

}
+ fh

1

r2 sin θ

∂

∂θ

{
sin θ

∂g

∂θ

}
+ fg

1

r2 sin2 θ

∂2h

∂φ2
= −β2fgh (3-78)

Dividing both sides by fgh , multiplying by r2 sin2 θ , and replacing the partials by ordinary
derivatives reduces (3-78) to

sin2 θ

f

d

dr

{
r2 df

dr

}
+ sin θ

g

d

dθ

{
sin θ

dg

dθ

}
+ 1

h

d2h

dφ2
= −(βr sin θ)2 (3-79)

Since the last term on the left side of (3-79) is only a function of φ, it can be set equal to

1

h

d2h

dφ2
= −m2 ⇒ d2h

dφ2
= −m2h (3-80)

where m is a constant.
Substituting (3-80) into (3-79), dividing both sides by sin2 θ , and transposing the term from

the right to the left side reduces (3-79) to

1

f

d

dr

{
r2 df

dr

}
+ (βr)2 + 1

g sin θ

d

dθ

{
sin θ

dg

dθ

}
−

{ m

sin θ

}2
= 0 (3-81)

Since the last two terms on the left side of (3-81) are only a function of θ , we can set them equal
to

1

g sin θ

d

dθ

{
sin θ

dg

dθ

}
−

{ m

sin θ

}2
= −n(n + 1) (3-82)

where n is usually an integer. Equation 3-82 is closely related to the well-known Legendre
differential equation (see Appendix V) [1–3, 6–10].

Substituting (3-82) into (3-81) reduces it to

1

f

d

dr

{
r2 df

dr

}
+ (βr)2 − n(n + 1) = 0 (3-83)

which is closely related to the Bessel differential equation (see Appendix IV).
In summary then, the scalar wave equation 3-75 whose expanded form in spherical coordinates

can be written as

1

r2

∂

∂r

{
r2 ∂ψ

∂r

}
+ 1

r2 sin θ

∂

∂θ

{
sin θ

∂ψ

∂θ

}
+ 1

r2 sin2 θ

∂2ψ

∂φ2
= −β2ψ (3-84)
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and whose separable solution takes the form of

ψ(r , θ , φ) = f (r)g(θ)h(φ) (3-85)

reduces to the three scalar differential equations

d

dr

{
r2 df

dr

}
+ [

(βr)2 − n(n + 1)
]

f = 0 (3-86a)

1

sin θ

d

dθ

{
sin θ

dg

dθ

}
+

[
n(n + 1) −

{ m

sin θ

}2
]

g = 0 (3-86b)

d2h

dφ2
= −m2h (3-86c)

where m and n are constants (usually integers).
Solutions to (3-86a) through (3-86c) take the forms, respectively, of

f1(r) = A1jn(βr) + B1yn(βr) (3-87a)

or
f2(r) = C1h(1)

n (βr) + D1h(2)
n (βr) (3-87b)

and
g1(θ) = A2Pm

n (cos θ) + B2Pm
n (− cos θ) n �= integer (3-88a)

or
g2(θ) = C2Pm

n (cos θ) + D2Qm
n (cos θ) n = integer (3-88b)

and
h1(φ) = A3e−jmφ + B3e+jmφ (3-89a)

or
h2(φ) = C3 cos(mφ) + D3 sin(mφ) (3-89b)

In (3-87a) jn(βr) and yn(βr) are referred to, respectively, as the spherical Bessel functions of
the first and second kind. They are used to represent radial standing waves, and they are related,
respectively, to the corresponding regular Bessel functions Jn+1/2(βr) and Yn+1/2(βr) by

jn(βr) =
√

π

2βr
Jn+1/2(βr) (3-90a)

yn(βr) =
√

π

2βr
Yn+1/2(βr) (3-90b)

In (3-87b) h(1)
n (βr) and h(2)

n (βr) are referred to, respectively, as the spherical Hankel functions
of the first and second kind. They are used to represent radial traveling waves, and they are related,
respectively, to the regular Hankel functions H (1)

n+1/2(βr) and H (2)
n+1/2(βr) by

h(1)
n (βr) =

√
π

2βr
H (1)

n+1/2(βr) (3-91a)

h(2)
n (βr) =

√
π

2βr
H (2)

n+1/2(βr) (3-91b)
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TABLE 3-3 Wave functions, zeroes, and infinities for radial waves in spherical
coordinates

Infinities
Wave Wave Zeroes of of wave
type functions wave functions functions

Traveling
waves

h(1)
n (βr) = jn(βr) + jyn(βr)

for −r travel
h(2)

n (βr) = jn(βr) − jyn(βr)

for +r travel

βr → +j∞

βr → −j∞

βr = 0
βr → −j∞
βr = 0
βr → +j∞

Standing
waves

jn(βr) for ± r
yn(βr) for ± r

Infinite number
Infinite number

βr → ±j∞
βr = 0
βr → ±j∞

Wave functions used to represent radial traveling and standing waves in spherical coordinates are
listed in Table 3-3. More details on the spherical Bessel and Hankel functions can be found in
Chapters 10 and 11 and Appendix IV.

In (3-88a) and (3-88b) Pm
n (cos θ) and Qm

n (cos θ) are referred to, respectively, as the associated
Legendre functions of the first and second kind (more details can be found in Chapter 10 and
Appendix V).

The appropriate solution forms of f , g , and h will depend on the problem in question. For
example, a typical solution for ψ(r , θ , φ) of (3-85) to represent the fields within a sphere as
shown in Figure 3-7 may take the form

ψ1(r , θ , φ) = [A1jn(βr) + B1yn(βr)]

×[C2Pm
n (cos θ) + D2Qm

n (cos θ)][C3 cos(mφ) + D3 sin(mφ)] (3-92)

For the fields to be finite at r = 0, where yn(βr) possesses a singularity, and for any value of
θ , including θ = 0, π where Qm

n (cos θ) possesses singularities, (3-92) reduces to

ψ1(r , θ , φ) = Amnjn(βr)Pm
n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (3-92a)

To represent the fields outside a sphere, like for scattering, a typical solution for ψ(r , θ , φ) would
take the form of

ψ2(r , θ , φ) = Bmnh(2)
n (βr)Pm

n (cos θ)[C3 cos(mφ) + D3 sin(mφ)] (3-92b)

z

y

x

a

Figure 3-7 Geometry of a sphere of radius a .
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whereby the spherical Hankel function of the second kind h(2)
n (βr) has replaced the spherical

Bessel function of the first kind jn(βr) because outward traveling waves are formed outside the
sphere, in contrast to the standing waves inside the sphere.

Other spherical Bessel and Hankel functions that are most often encountered in boundary-
value electromagnetic problems are those utilized by Schelkunoff [3, 11]. These spherical Bessel
and Hankel functions, denoted in general by B̂n(βr) to represent any of them, must satisfy the
differential equation

d2B̂n

dr2
+

[
β2 − n(n + 1)

r2

]
B̂n = 0 (3-93)

The spherical Bessel and Hankel functions that are solutions to this equation are related to other
spherical Bessel and Hankel functions of (3-90a) through (3-91b), denoted here by bn(βr), and
to the regular Bessel and Hankel functions, denoted here by Bn+1/2(βr), by

B̂n(βr) = βr bn(βr) = βr
√

π

2βr
Bn+1/2(βr) =

√
πβr

2
Bn+1/2(βr) (3-94)

More details concerning the application and properties of the spherical Bessel and Hankel
functions can be found in Chapter 10.

3.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

3.1. Derive the vector wave equations 3-16a and
3-16b for time-harmonic fields using the
Maxwell equations of Table 1-4 for time-
harmonic fields.

3.2. Verify that (3-28a) and (3-28b) are solutions
to (3-26a).

3.3. Show that the second complex exponential
in (3-31) represents a wave traveling in the
−z direction. Determine its phase velocity.

3.4. Using the method of separation of variables
show that a solution to (3-37a) of the form
(3-39) can be represented by (3-40a) through
(3-43).

3.5. Show that the vector wave equation of (3-
53) reduces, when E has a solution of
the form (3-47), to the three scalar wave
equations 3-54a through 3-54c.

3.6. Reduce (3-51) to (3-54a) through (3-54c) by
expanding ∇2E. Do not use (3-52); rather
use the scalar Laplacian in cylindrical coor-
dinates and treat E as a vector given by
(3-47). Use that

∂ âρ

∂ρ
= ∂ âφ

∂ρ
= ∂ âz

∂ρ
= 0 = ∂ âz

∂φ
= ∂ âρ

∂z

= ∂ âφ

∂z
= ∂ âz

∂z
∂ âρ

∂φ
= âφ

∂ âφ

∂φ
= −âρ

3.7. Using large argument asymptotic forms,
show that Bessel and Hankel functions rep-
resent, respectively, standing and traveling
waves in the radial direction.

3.8. Using large argument asymptotic forms and
assuming ejωt time convention, show that
Hankel functions of the first kind represent
traveling waves in the −ρ direction whereas
Hankel functions of the second kind repre-
sent traveling waves in the +ρ direction.
The opposite would be true were the time
variations of the e−jωt form.

3.9. Using large argument asymptotic forms,
show that Bessel functions of complex argu-
ment represent attenuating standing waves.

3.10. Assuming time variations of ejωt and using
large argument asymptotic forms, show that
Hankel functions of the first and second kind
with complex arguments represent, respec-
tively, attenuating traveling waves in the −ρ

and +ρ directions.

3.11. Show that when E can be expressed as
(3-71), the vector wave equation 3-53 redu-
ces to the three scalar wave equations 3-74a
through 3-74c.

3.12. Reduce (3-51) to (3-74a) through (3-74c) by
expanding ∇2E. Do not use (3-52); rather
use the scalar Laplacian in spherical coordi-
nates and treat E as a vector given by (3-71).
Use that

∂ âr

∂r
= ∂ âθ

∂r
= ∂ âφ

∂r
= 0

∂ âr

∂θ
= âθ

∂ âθ

∂θ
= −âr

∂ âφ

∂θ
= 0

∂ âr

∂φ
= sin θ âφ

∂ âθ

∂φ
= cos θ âφ

∂ âφ

∂φ
= − sin θ âr − cos θ âθ

3.13. Using large argument asymptotic forms,
show that spherical Bessel functions repre-
sent standing waves in the radial direction.

3.14. Show that spherical Hankel functions of the
first and second kind represent, respectively,
radial traveling waves in the −r and +r
directions. Assume time variations of ejωt

and large argument asymptotic expansions
for the spherical Hankel functions.

3.15. Justify that associated Legendre functions
represent standing waves in the θ direction
of the spherical coordinate system.

3.16. Verify the relation (3-94) between the vari-
ous forms of the spherical Bessel and Hankel
functions and the regular Bessel and Hankel
functions.





CHAPTER 4
Wave Propagation and Polarization

4.1 INTRODUCTION

In Chapter 3 we developed the vector wave equations for the electric and magnetic fields in
lossless and lossy media. Solutions to the wave equations were also demonstrated in rectangular,
cylindrical, and spherical coordinates using the method of separation of variables . In this chapter
we want to consider solutions for the electric and magnetic fields of time-harmonic waves that
travel in infinite lossless and lossy media. In particular, we want to develop expressions for
transverse electromagnetic (TEM) waves (or modes) traveling along principal axes and oblique
angles. The parameters of wave impedance, phase and group velocities, and power and energy
densities will be discussed for each.

The concept of wave polarization will be introduced, and the necessary and sufficient conditions
to achieve linear, circular, and elliptical polarizations will be discussed and illustrated. The sense
of rotation, clockwise (right-hand) or counterclockwise (left-hand), will also be introduced.

4.2 TRANSVERSE ELECTROMAGNETIC MODES

A mode is a particular field configuration. For a given electromagnetic boundary-value problem,
many field configurations that satisfy the wave equations, Maxwell’s equations, and the boundary
conditions usually exist. All these different field configurations (solutions) are usually referred to
as modes .

A TEM mode is one whose field intensities, both E (electric) and H (magnetic), at every point
in space are contained on a local plane, referred to as equiphase plane, that is independent of
time. In general, the orientations of the local planes associated with the TEM wave are different
at different points in space. In other words, at point (x1, y1, z1) all the field components are
contained on a plane. At another point (x2, y2, z2) all field components are again contained on a
plane; however, the two planes need not be parallel. This is illustrated in Figure 4-1a .

If the space orientation of the planes for a TEM mode is the same (equiphase planes are
parallel), as shown in Figure 4-1b, then the fields form plane waves . In other words, the equiphase
surfaces are parallel planar surfaces. If in addition to having planar equiphases the field has
equiamplitude planar surfaces (the amplitude is the same over each plane), then it is called a
uniform plane wave; that is, the field is not a function of the coordinates that form the equiphase
and equiamplitude planes.

123
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Figure 4-1 Phase fronts of waves. (a) TEM. (b) Plane.

4.2.1 Uniform Plane Waves in an Unbounded Lossless Medium—Principal Axis

In this section we will write expressions for the electric and magnetic fields of a uniform plane
wave traveling in an unbounded medium. In addition the wave impedance, phase and energy
(group) velocities, and power and energy densities of the wave will be discussed.

A. Electric and Magnetic Fields Let us assume that a time-harmonic uniform plane wave is
traveling in an unbounded lossless medium (ε, μ) in the z direction (either positive or negative),
as shown in Figure 4-2a . In addition, for simplicity, let us assume the electric field of the wave
has only an x component. We want to write expressions for the electric and magnetic fields
associated with this wave.
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Figure 4-2 Uniform plane wave fields. (a) Complex. (b) Instantaneous.

For the electric and magnetic field components to be valid solutions of a time-harmonic electro-
magnetic wave, they must satisfy Maxwell’s equations as given in Table 1-4 or the corresponding
wave equations as given, respectively, by (3-18a) and (3-18b). Here the approach will be to initiate
the solution by solving the wave equation for either the electric or magnetic field and then finding
the other field using Maxwell’s equations. An alternate procedure, which has been assigned as an
end-of-chapter problem, would be to follow the entire solution using only Maxwell’s equations.

Since the electric field has only an x component, it must satisfy the scalar wave equation of
(3-20a) or (3-22), whose general solution is given by (3-23). Because the wave is a uniform plane
wave that travels in the z direction, its solution is not a function of x and y . Therefore (3-23)
reduces to

Ex (z ) = h(z ) (4-1)

The solutions of h(z ) are given by (3-30a) or (3-30b). Since the wave in question is a traveling
wave, instead of a standing wave, its most appropriate solution is that given by (3-30a). The first
term in (3-30a) represents a wave that travels in the +z direction and the second term represents
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a wave that travels in the −z direction. Therefore the solution of (4-1), using (3-30a), can be
written as

Ex (z ) = A3e−jβz + B3e+jβz = E+
x + E−

x (4-2)

or

Ex (z ) = E+
0 e−jβz + E−

0 e+jβz = E+
x + E−

x (4-2a)

E+
x (z ) = E+

0 e−jβz (4-2b)

E−
x (z ) = E−

0 e+jβz (4-2c)

since βz = β because βx = βy = 0. E+
0 and E−

0 represent, respectively, the amplitudes of the
positive and negative (in the z direction) traveling waves.

The corresponding magnetic field must also be a solution of its wave equation 3-18b, and its
form will be similar to (4-2). However, since we do not know which components of magnetic
field coexist with the x component of the electric field, they are most appropriately determined
by using one of Maxwell’s equations as given in Table 1-4. Since the electric field is known, as
given by (4-2), the magnetic field can best be found using

∇ × E = −jωμH (4-3)

or

H = − 1

jωμ
∇ × E = − 1

jωμ

⎡⎢⎢⎣
âx ây âz

∂

∂x

∂

∂y

∂

∂z
Ex 0 0

⎤⎥⎥⎦ (4-3a)

which, using (4-2a), reduces to

H = −ây
1

jωμ

{
∂Ex

∂z

}
= ây

β

ωμ

{
E+

0 e−jβz − E−
0 e+jβz

}
H = ây

1√
μ/ε

{
E+

0 e−jβz − E−
0 e+jβz

} = ây
1√
μ/ε

{
E+

x − E−
x

} = ây

{
H +

y + H −
y

}
(4-3b)

where

H +
y = 1√

μ/ε
E+

x (4-3c)

H −
y = − 1√

μ/ε
E−

x (4-3d)

Plots of the instantaneous positive traveling electric and magnetic fields at t = 0 as a function
of z are shown in Figure 4-2b. Similar plots can be drawn for the negative traveling fields.

B. Wave Impedance Since each term for the magnetic field (A/m) in (4-3c) and (4-3d) is
individually identical to the corresponding term for the electric field (V/m) in (4-2a), the factor√

μ/ε in the denominator in (4-3c) and (4-3d) must have units of ohms (V/A). Therefore the
factor

√
μ/ε is known as the wave impedance, Zw, denoted by the ratio of the electric to magnetic

field, and it is usually represented by η

Zw = E+
x

H +
y

= − E−
x

H −
y

= η =
√

μ

ε
(4-4)
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The wave impedance of (4-4) is identical to a quantity that is referred to as the intrinsic impedance
η = √

μ/ε of the medium. In general, this is true not only for uniform plane waves but also for
plane and TEM waves; however, it is not true for TE or TM modes.

In (4-3d) it is also observed that a negative sign is found in front of the magnetic field
component that travels in the −z direction; a positive sign is noted in front of the positive traveling
wave. The general procedure that can be followed to find the magnetic field components, given
the electric field components, or to find the electric field components, given the magnetic field
components, is the following:

1. Place the fingers of your right hand in the direction of the electric field component.
2. Direct your thumb toward the direction of wave travel (power flow).
3. Rotate your fingers 90◦ in a direction so that a right-hand screw is formed.
4. The new direction of your fingers is the direction of the magnetic field component.
5. Divide the electric field component by the wave impedance to obtain the corresponding

magnetic field component.

The foregoing procedure must be followed for each term of each component of an electric
or magnetic field. The results are identical to those that would be obtained by using Maxwell’s
equations. If the wave impedance is known in advance, as it is for TEM waves, this procedure
is simpler and much more rapid than using Maxwell’s equations. By following this procedure,
the answers (including the signs) in (4-3c) and (4-3d) given (4-2b) and (4-2c) are obvious.

To illustrate the procedure, let us consider another example.

Example 4-1

The electric field of a uniform plane wave traveling in free space is given by

E = ây
(
E+

0 e−jβz + E−
0 e+jβz ) = ây

(
E+

y + E−
y

)
where E+

0 and E−
0 are constants. Find the corresponding magnetic field using the outlined procedure.

Solution: For the electric field component that is traveling in the +z direction, the corresponding
magnetic field component is given by

H+ = −âx
E+

0

η0

e−jβz � −âx
E+

0

377
e−jβz

where

η0 = Zw =
√

μ0

ε0
� 377 ohms

Similarly, for the wave that is traveling in the −z direction we can write that

H− = âx
E−

0

η0

e+jβz � âx
E−

0

377
e+jβz

Therefore the total magnetic field is equal to

H = H+ + H− = âx
1

η0

(−E+
0 e−jβz + E−

0 e+jβz )
The same answer would be obtained if Maxwell’s equations were used, and it is assigned as an end-of-
chapter problem.
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The term in the expression for the electric field in (4-2a) that identifies the direction of wave
travel can also be written in vector notation. This is usually more convenient to use when dealing
with waves traveling at oblique angles. Equation 4-2a can therefore take the more general form of

Ex (z ) = E+
0 e−jβ+ • r + E−

0 e−jβ− • r (4-5)

where

β+ = β̂+β = âxβ
+
x + âyβ

+
y + âz β

+
z

∣∣ = âz β
β+

x =β+
y =0

β+
z =β

(4-5a)

β− = β̂−β = âxβ
−
x + âyβ

−
y − âz β

−
z

∣∣= −âz β
β−

x =β−
y =0

β−
z =β

(4-5b)

r = position vector = âx x + ây y + âz z (4-5c)

In (4-5a) through (4-5c), βx , βy , βz represent, respectively, the phase constants of the wave in
the x , y , z directions, r represents the position vector in rectangular coordinates, and β̂+ and β̂−
represent unit vectors in the directions of β+ and β−. The notation used in (4-5) through (4-5c)
to represent the wave travel will be most convenient to express wave travel at oblique angles,
as will be the case in Section 4.2.2.

C. Phase and Energy (Group) Velocities, Power, and Energy Densities The expressions
for the electric and magnetic fields, as given by (4-2a) and (4-3b), represent the spatial variations
of the field intensities. The corresponding instantaneous forms of each can be written, using
(1-61a) and (1-61b) and assuming E+

0 and E−
0 are real constants, as

�x (z ; t) = �+
x (z ; t) + �−

x (z ; t) = Re
[
E+

0 e−jβz ejωt
] + Re

[
E−

0 e+jβz ejωt
]

= E+
0 cos (ωt − βz ) + E−

0 cos (ωt + βz ) (4-6a)

�y (z ; t) = �+
y (z ; t) + �−

y (z ; t)

= 1√
μ/ε

[
E+

0 cos (ωt − βz ) − E−
0 cos (ωt + βz )

]
(4-6b)

In each of the fields, as given by (4-6a) and (4-6b), the first term represents, according to
(3-34) through (3-35) and Figure 3-3, a wave that travels in the +z direction; the second term
represents a wave that travels in the −z direction. To maintain a constant phase in the first term
of (4-6a), the velocity must be equal, according to (3-35), to

v+
p = +dz

dt
= ω

β
= ω

ω
√

με
= 1√

με
(4-7)

The corresponding velocity of the second term in (4-6a) is identical in magnitude to (4-7) but
with a negative sign to reflect the direction of wave travel. The velocity of (4-7) is referred to
as the phase velocity , and it represents the velocity that must be maintained in order to keep in
step with a constant phase front of the wave. As will be shown for oblique traveling waves, the
phase velocity of such waves can exceed the velocity of light. This is only a hypothetical speed,
as will be explained in Section 4.2.2C. Aside of nonuniform plane waves, also referred to as
slow surface waves (see Section 5.3.4A), in general the phase velocity can be equal to or even
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greater than the speed of light. Variations of the instantaneous positive traveling electric �+
x (z ; t)

and magnetic �+
y (z ; t) fields as a function of z for t = 0 are shown in Figure 4-2b. As time

increases, both curves will shift in the positive z direction. A similar set of curves can be drawn
for the negative traveling electric �−

x (z ; t) and magnetic �−
y (z ; t) fields.

The electric and magnetic energies (W-s/m3) and power densities (W/m2) associated
with the positive traveling waves of (4-6a) and (4-6b) can be written, according to (l-58f) and
(l-58e), as

w+
e = 1

2
ε�+2

x = 1

2
εE+2

0 cos2 (ωt − βz ) (4-8a)

w+
m = 1

2
μ�+2

y = 1

2
μ

[
(ε/μ) E+2

0 cos2 (ωt − βz )
] = 1

2
εE+2

0 cos2 (ωt − βz ) (4-8b)

	+ = �+ × �+ = âx E+
0 cos (ωt − βz ) ×

[
ây

(
1/

√
μ/ε

)
E+

0 cos (ωt − βz )
]

= âz 
+ = âz

(
1/

√
μ/ε

)
E+2

0 cos2 (ωt − βz ) (4-8c)

The ratio formed by dividing the power density 
 (W/m2) by the total energy density w =
we + wm (J/m3 = W-s/m3) is referred to as the energy (group) velocity ve , and it is given by

v+
e = 
+

w+ = 
+

w+
e + w+

m
=

(
1/

√
μ/ε

)
E+2

0 cos2 (ωt − βz )

εE+2
0 cos2 (ωt − βz )

= 1√
με

(4-9)

The energy velocity represents the velocity with which the wave energy is transported. It is
apparent that (4-9) is identical to (4-7). In general that is not the case. In fact, the energy velocity
v+

e can be equal to, but not exceed, the speed of light, and the product of the phase velocity vp

and energy velocity ve must always be equal to

v+
p v+

e = (v+)2 = 1

με
(4-10)

where v+ = 1/
√

με is the speed of light. The same holds for the negative traveling waves.
The time-average power density (Poynting vector) associated with the positive traveling wave

can be written, using (l-70) and the first terms of (4-2a) and (4-3b), as

	+
av = 1

2
Re

(
E+ × H+∗) = âz

1

2
√

μ/ε
|E+

x |2 = âz
|E+

0 |2
2
√

μ/ε
= âz

|E+
0 |2

2η
(4-11)

A similar expression is derived for the negative traveling wave.

D. Standing Waves Each of the terms in (4-2a) and (4-3b) represents individually traveling
waves, the first traveling in the positive z direction and the second in the negative z direction.
The two together form a so-called standing wave, which is comprised of two oppositely traveling
waves.

To examine the characteristics of a standing wave, let us rewrite (4-2a) as

Ex (z ) = E+
0 e−jβz + E−

0 e+jβz

= E+
0

[
cos (βz ) − j sin (βz )

] + E−
0

[
cos (βz ) + j sin (βz )

]
= (

E+
0 + E−

0

)
cos (βz ) − j

(
E+

0 − E−
0

)
sin (βz )
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Ex (z ) =
√(

E+
0 + E−

0

)2
cos2 (βz ) + (

E+
0 − E−

0

)2
sin2 (βz )

× exp

{
−j tan−1

[ (
E+

0 − E−
0

)
sin (βz )(

E+
0 + E−

0

)
cos (βz )

]}

Ex (z ) =
√(

E+
0

)2 + (
E−

0

)2 + 2E+
0 E−

0 cos (2βz )

× exp

{
−j tan−1

[(
E+

0 − E−
0

)(
E+

0 + E−
0

) tan (βz )

]}
(4-12)

The amplitude of the waveform given by (4-12) is equal to

|Ex (z ) | =
√(

E+
0

)2 + (
E−

0

)2 + 2E+
0 E−

0 cos (2βz ) (4-12a)

By examining (4-12a), it is evident that its maximum and minimum values are given, respectively,
by

|Ex (z ) |max = |E+
0 | + |E−

0 | when βz = mπ , m = 0, 1, 2, . . . (4-13a)

and for |E+
0 | > |E−

0 |,

|Ex (z ) |min = |E+
0 | − |E−

0 | when βz = (2m + 1)π

2
, m = 0, 1, 2, . . . (4-13b)

Neighboring maximum and minimum values are separated by a distance of λ/4 or successive
maxima or minima are separated by λ/2.

The instantaneous field of (4-12) can also be written as

�x (z ; t) = Re
[
Ex (z ) ejωt

]
=

√(
E+

0

)2 + (
E−

0

)2 + 2E+
0 E−

0 cos (2βz )

× cos

[
ωt − tan−1

{
E+

0 − E−
0

E+
0 + E−

0

tan (βz )

}]
(4-14)

It is apparent that (4-12a) represents the envelope of the maximum values the instantaneous field
of (4-14) will achieve as a function of time at a given position. Since this envelope of maximum
values does not move (change) in position as a function of time, it is referred to as the standing
wave pattern and the associated wave of (4-12) or (4-14) is referred to as the standing wave.

The ratio of the maximum/minimum values of the standing wave pattern of (4-12a), as given
by (4-13a) and (4-13b), is referred to as the standing wave ratio (SWR), and it is given by

SWR = |Ex (z ) |max

|Ex (z ) |min
= |E+

0 | + |E−
0 |

|E+
0 | − |E−

0 | =
1 + |E−

0 |
|E+

0 |

1 − |E−
0 |

|E+
0 |

= 1 + |�|
1 − |�| (4-15)

where � is the reflection coefficient. Since in transmission lines we usually deal with voltages and
currents (instead of electric and magnetic fields), the SWR is usually referred to as the VSWR
(voltage standing wave ratio). Plots of the standing wave pattern in terms of E+

0 as a function of
z (−λ ≤ z ≤ λ) for |�| = 0, 0.2, 0.4, 0.6, 0.8, and 1 are shown in Figure 4-3.

The SWR is a quantity that can be measured with instrumentation [1, 2]. SWR has values
in the range of 1 ≤ SWR ≤ ∞. The value of the SWR indicates the amount of interference
between the two opposite traveling waves; the smaller the SWR value, the lesser the interference.
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Figure 4-3 Standing wave pattern as a function of distance for a uniform plane wave with different
reflection coefficients.

The minimum SWR value of unity occurs when |�| = E−
0 /E+

0 = 0, and it indicates that no
interference is formed. Thus the standing wave reduces to a pure traveling wave. The maximum
SWR of infinity occurs when |�| = E−

0 /E+
0 = 1, and it indicates that the negative traveling wave

is of the same intensity as the positive traveling wave. This provides the maximum interference,
and the wave forms a pure standing wave pattern given by

|Ex (z ) |E+
0 =E−

0
= 2E+

0 | cos(βz )| = 2E−
0 | cos (βz ) | (4-16)

The pattern of this is a rectified cosine function, and it is represented in Figure 4-3 by the |�| = 1
curve. The pattern exhibits pure nulls and peak values of twice the amplitude of the incident wave.

4.2.2 Uniform Plane Waves in an Unbounded Lossless Medium—Oblique Angle

In this section, expressions for the electric and magnetic fields, wave impedance, phase and group
velocities, and power and energy densities will be written for uniform plane waves traveling at
oblique angles in an unbounded medium. All of these will be done for waves that are uniform
plane waves to the direction of travel.
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A. Electric and Magnetic Fields Let us assume that a uniform plane wave is traveling in
an unbounded medium in a direction shown in Figure 4-4a . The amplitudes of the positive and
negative traveling electric fields are E+

0 and E−
0 , respectively, and the assumed directions of each

are also illustrated in Figure 4-4a . It is desirable to write expressions for the positive and negative
traveling electric and magnetic field components.
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Figure 4-4 Transverse electric and magnetic uniform plane waves in an unbounded medium at an oblique
angle. (a) TEy mode. (b) TMy mode.
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Since the electric field of the wave of Figure 4-4a does not have a y component, the field
configuration is referred to as transverse electric to y (TEy ). More detailed discussion on the
construction of transverse electric (TE) and transverse magnetic (TM) field configurations, as
well as transverse electromagnetic (TEM), can be found in Chapter 6.

Because for the TEy wave of Figure 4-4a the electric field is pointing along a direction that
does not coincide with any of the principal axes, it can be decomposed into components coincident
with the principal axes. According to the geometry of Figure 4-4a , it is evident that the electric
field can be written as

E = E+ + E− = E+
0 (âx cos θi − âz sin θi ) e−jβ+ • r

+E−
0 (âx cos θi − âz sin θi ) e−jβ− • r (4-17)

where r is the position vector of (4-5c), and it is displayed graphically in Figure 4-5. Since the
phase constants β+ and β− can be written, respectively, as

β+ = β̂+β = âxβ
+
x + âz β

+
z = β (âx sin θi + âz cos θi ) (4-17a)

β− = β̂−β = âxβ
−
x + âz β

−
z = −β (âx sin θi + âz cos θi ) (4-17b)

(4-17) can be expressed as

E = E+
0 (âx cos θi − âz sin θi ) e−jβ(x sin θi +z cos θi )

+E−
0 (âx cos θi − âz sin θi ) e+jβ(x sin θi +z cos θi ) (4-18a)

Since the wave is a uniform plane wave, the amplitude of its magnetic field is related to
the amplitude of its electric field by the wave impedance (in this case also by the intrinsic
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Figure 4-5 Phase front of a TEM wave traveling in a general direction.
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impedance) as given by (4-4). Since the magnetic field is traveling in the same direction as the
electric field, the exponentials used to indicate its directions of travel are the same as those of
the electric field as given in (4-18a). The directions of the magnetic field can be found using the
right-hand procedure outlined in Section 4.2.1 and illustrated graphically in Figure 4-2b for the
positive traveling wave. Using all of the preceding information, it is evident that the magnetic
field corresponding to the electric field of (4-18a) can be written as

H = H+ + H− = ây

[
E+

0

η
e−jβ(x sin θi +z cos θi ) − E−

0

η
e+jβ(x sin θi +z cos θi )

]
(4-18b)

In vector form, (4-18b) can also be written as

H = 1

η

[
β̂+ × E+ + β̂− × E−

]
(4-18c)

The same form can be used to relate the E and H for any TEM wave traveling in any direction. It
is apparent that when θi = 0, (4-18a) and (4-18b) reduce to (4-2a) and (4-3b), respectively. The
same answer for the magnetic field of (4-18b) can be obtained by applying Maxwell’s equation 4-3
to the electric field of (4-18a). This is left for the reader as an end-of-the-chapter exercise.

The planes of constant phase at any time t are obtained by setting the phases of (4-18a) or
(4-18b) equal to a constant, that is

β+ • r = β+
x x + β+

y y + β+
z z |y=0 = β (x sin θi + z cos θi ) = C + (4-19a)

β− • r = β−
x x + β−

y y + β−
z z |y=0 = −β (x sin θi + z cos θi ) = C − (4-19b)

Each of (4-19a) and (4-19b) are equations of a plane in either the spherical or rectangular
coordinates with unit vectors β̂+ and β̂− normal to each of the respective surfaces. The respective
phase velocities in any direction (r , x , or z ) are obtained by letting

β+ • r − ωt = β (x sin θi + z cos θi ) − ωt = C +
0 (4-19c)

β− • r − ωt = −β (x sin θi + z cos θi ) − ωt = C −
0 (4-19d)

and taking a derivative with respect to time.

Example 4-2

Another exercise of interest is that in which the electric field is directed along the +y direction and the
wave is traveling along an oblique angle θi , as shown in Figure 4-4b. This is referred to as a TMy wave.
The objective here is again to write expressions for the positive and negative electric and magnetic field
components, assuming the amplitudes of the positive and negative electric field components are E+

0 and
E−

0 , respectively.

Solution: Since this wave only has a y electric field component, and it is traveling in the same
direction as that of Figure 4-4a , we can write the electric field as

E = E+ + E− = ây
[
E+

0 e−jβ(x sin θi +z cos θi ) + E−
0 e+jβ(x sin θi +z cos θi )

]
Using the right-hand procedure outlined in Section 4.2.1, the corresponding magnetic field components
are pointed along directions indicated in Figure 4-4b. Since the magnetic field is not directed along any
of the principal axes, it can be decomposed into components that coincide with the principal axes, as
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shown in Figure 4-4b. Doing this and relating the amplitude of the electric and magnetic fields by the
intrinsic impedance, we can write the magnetic field as

H = H+ + H− = E+
0

η
(−âx cos θi + âz sin θi ) e−jβ(x sin θi +z cos θi )

+E−
0

η
(âx cos θi − âz sin θi ) e+jβ(x sin θi +z cos θi )

The same answers could have been obtained if Maxwell’s equation 4-3 were used. Since the
magnetic field does not have any y components, this field configuration is referred to as transverse
magnetic to y (TMy ), which will be discussed in more detail in Chapter 6.

B. Wave Impedance Since the TEy and TMy fields of Section 4.2.2A were TEM to the
direction of travel, the wave impedance of each in the direction β of wave travel is the same as
the intrinsic impedance of the medium. However, there are other directional impedances toward
the x and z directions. These impedances are obtained by dividing the electric field component
by the corresponding orthogonal magnetic field component. These two components are chosen
so that the cross product of the electric field and the magnetic field, which corresponds to the
direction of power flow, is in the direction of the wave travel.

Following the aforementioned procedure, the directional impedances for the TEy fields of
(4-18a) and (4-18b) can be written as

TEy

Z +
x = − E+

z

H +
y

= η sin θi = Z −
x = E−

z

H −
y

(4-20a)

Z +
z = E+

x

H +
y

= η cos θi = Z −
z = − E−

x

H −
y

(4-20b)

In the same manner, the directional impedances of the TMy fields of Example 4-2 can be
written as

TMy

Z +
x = E+

y

H +
z

= η

sin θi
= Z −

x = − E−
y

H −
z

(4-21a)

Z +
z = − E+

y

H +
x

= η

cos θi
= Z −

z = E−
y

H −
x

(4-21b)

It is apparent from the preceding results that the directional impedances of the TEy oblique
incidence traveling waves are equal to or smaller than the intrinsic impedance and those of the
TMy are equal to or larger than the intrinsic impedance. In addition, the positive and negative
directional impedances of the same orientation are the same. This is the main principle of the
transverse resonance method (see Section 8.6), which is used to analyze microwave circuits and
antenna systems [3, 4].
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C. Phase and Energy (Group) Velocities The wave velocity vr of the fields given by
(4-18a) and (4-18b) in the direction β of travel is equal to the speed of light v. Since the wave is
a plane wave to the direction β of travel, the planes over which the phase is constant (constant
phase planes) are perpendicular to the direction β of wave travel. This is illustrated graphically
in Figure 4-6. To maintain a constant phase (or to keep in step with a constant phase plane),
a velocity equal to the speed of light must be maintained in the direction β of travel. This is
referred to as the phase velocity vpr along the direction β of travel. Since the energy also is being
transported with the same speed, the energy velocity ver in the direction β of travel is also equal
to the speed of light. Thus

vr = vpr = ver = v = 1√
με

(4-22)

where
vr = wave velocity in the direction of wave travel

vpr = phase velocity in the direction of wave travel
ver = energy (group) velocity in the direction of wave travel
v = speed of light

To keep in step with a constant phase plane of the wave of Figure 4-6, a velocity in the z
direction equal to

vpz = v

cos θi
= 1√

με cos θi
≥ v (4-23)

must be maintained. This is referred to as the phase velocity vpz in the z direction, and it is
greater than the speed of light. Since nothing travels with speeds greater than the speed of light,
it must be remembered that this is a hypothetical velocity that must be maintained in order to
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Figure 4-6 Phase and energy (group) velocities of a uniform plane wave.
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keep in step with a constant phase plane of the wave that itself travels with the speed of light in
the direction β of travel. The phase velocities of (4-22) and (4-23) can be obtained, respectively,
by using (4-19c) and (4-19d). These are left as end-of-chapter exercises for the reader.

Whereas a velocity greater than the speed of light must be maintained in the z direction to
keep in step with a constant phase plane of Figure 4-6, the energy is transported in the z direction
with a velocity that is equal to

vez = v cos θi = cos θi√
με

≤ v (4-24)

This is referred to as the energy (group) velocity vez in the z direction, and it is equal to or
smaller than the speed of light. Graphically this is illustrated in Figure 4-6.

For any wave, the product of the phase and energy velocities in any direction must be equal
to the speed of light squared or

vprver = vpz vez = v2 = 1

με
(4-25)

This obviously is satisfied by the previously derived results.
The energy velocity of (4-24) can be derived using (4-18a) and (4-18b) along with the definition

(4-9). This is left for the reader as an end-of-chapter exercise.
Since the fields of (4-18a) and (4-18b) form a uniform plane wave, the planes over which the

amplitude is maintained constant are also constant planes that are perpendicular to the direction
β of travel. These are illustrated in Figure 4-6 and coincide with the constant phase planes. For
other types of waves, the constant phase and amplitude planes do not in general coincide.

D. Power and Energy Densities The average power density associated with the fields of
(4-18a) and (4-18b) that travel in the β+ direction is given by

(
S+

av

)
r = 1

2
Re

[(
E+) × (

H+)∗]
= 1

2
Re

[
E+

0 (âx cos θi − âz sin θi ) e−jβ(x sin θi +z cos θi )

×ây
E+∗

0

η
e+jβ(x sin θi +z cos θi )

]
(
S+

av

)
r = (âx sin θi + âz cos θi )

|E+
0 |2

2η
= âr

|E+
0 |2

2η
= âx

(
S +

av

)
x + âz

(
S +

av

)
z

(4-26)

where

(
S +

av

)
x = sin θi

|E+
0 |2

2η
= sin θi

(
S +

av

)
r (4-26a)

(
S +

av

)
z = cos θi

|E+
0 |2

2η
= cos θi

(
S +

av

)
r (4-26b)

(S +
av)r represents the average power density along the principal β+ direction of travel and (S +

av)x

and (S +
av)z represent the directional power densities of the wave in the +x and +z directions,

respectively. Similar expressions can be derived for the wave that travels along the β− direction.
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Example 4-3

For the TMy fields of Example 4-2, derive expressions for the average power density along the principal
β+ direction of travel and for the directional power densities along the +x and +z directions.

Solution: Using the electric and magnetic fields of the solution of Example 4-2 and following the
procedure used to derive (4-26) through (4-26b), it can be shown that(

S+
av

)
r = 1

2
Re

[(
E+) × (

H+)∗]
= 1

2
Re

[
ây E+

0 e−jβ(x cos θi +y sin θi )

×
(
E+

0

)∗

η
(−âx cos θi + âz sin θi ) e+jβ(x cos θi +y sin θi )

]
(
S+

av

)
r = (âx sin θi + âz cos θi )

|E+
0 |2
2η

= âr
|E+

0 |2
2η

= âx
(
S +

av

)
x + âz

(
S +

av

)
z

where (
S +

av

)
x = sin θi

|E+
0 |2
2η

= sin θi
(
S +

av

)
r

(
S +

av

)
z = cos θi

|E+
0 |2
2η

= cos θi
(
S +

av

)
r

(S +
av), (S +

av)x , and (S +
av)z of this TMy wave are identical to the corresponding ones of the TEy wave,

given by (4-26) through (4-26b).

4.3 TRANSVERSE ELECTROMAGNETIC MODES IN LOSSY MEDIA

In addition to the accumulation of phase, electromagnetic waves that travel in lossy media undergo
attenuation. To account for the attenuation, an attenuation constant is introduced as discussed in
Chapter 3, Section 3.4.1B. In this section we want to discuss the solution for the electric and
magnetic fields of uniform plane waves as they travel in lossy media [5].

4.3.1 Uniform Plane Waves in an Unbounded Lossy Medium—Principal Axis

As for the electromagnetic wave of Section 4.2.1, let us assume that a uniform plane wave is
traveling in a lossy medium. Using the coordinate system of Figure 4-1, the electric field is
assumed to have an x component and the wave is traveling in the ±z direction. Since the electric
field must satisfy the wave equation for lossy media, its expression takes, according to (3-42a),
the form

E (z ) = âx Ex (z ) = âx
(
E+

0 e−γ z + E−
0 e+γ z

) = âx
(
E+

0 e−αz e−jβz + E−
0 e+αz e+jβz

)
(4-27)

where γx = γy = 0 and γz = γ . The first term represents the positive traveling wave and the
second term represents the negative traveling wave. In (4-27) γ is the propagation constant whose
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real α and imaginary β parts are defined, respectively, as the attenuation and phase constants.
According to (3-37e) and (3-46), γ takes the form

γ = α + jβ =
√

jωμ (σ + jωε) =
√

−ω2με + jωμσ (4-28)

Squaring (4-28) and equating real and imaginary from both sides reduces it to

α2 − β2 = −ω2με (4-28a)

2αβ = ωμσ (4-28b)

Solving (4-28a) and (4-28b) simultaneously, we can write α and β as

α = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
− 1

]}1/2

Np/m (4-28c)

β = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
+ 1

]}1/2

rad/m (4-28d)

In the literature, the phase constant β is also represented by k .
The attenuation constant α is often expressed in decibels per meter (dB/m). The conversion

between Nepers per meter and decibels per meter is obtained by examining the real exponential
in (4-27) that represents the attenuation factor of the wave in a lossy medium. Since that factor
represents the relative attenuation of the electric or magnetic field, its conversion to decibels (dB)
is obtained by

dB = 20 log10

(
e−αz

) = 20 (−αz ) log10 (e)

= 20 (−αz ) (0.434) = −8.68 (αz ) (4-28e)

or

|α (Np/m) | = 1

8.68
|α (dB/m) | (4-28f)

The magnetic field associated with the electric field of (4-27) can be obtained using Maxwell’s
equation 4-3 or 4-3a, that is,

H = − 1

jωμ
∇ × E = −ây

1

jωμ

∂Ex

∂z
(4-29)

Using (4-27) reduces (4-29) to

H = +ây
γ

jωμ

(
E+

0 e−γ z − E−
0 e+γ z

)
= ây

√
jωμ (σ + jωε)

jωμ

(
E+

0 e−γ z − E−
0 e+γ z

)
= ây

√
σ + jωε

jωμ

(
E+

0 e−γ z − E−
0 e+γ z

)
H = ây

1

Zw

(
E+

0 e−γ z − E−
0 e+yz

)
(4-29a)
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In (4-29a), Zw is the wave impedance of the wave, and it takes the form

Zw =
√

jωμ

σ + jωε
= ηc (4-30)

which is also equal to the intrinsic impedance ηc of the lossy medium. The equality between the
wave and intrinsic impedances for TEM waves in lossy media is identical to that for lossless
media of Section 4.2.1B.

The average power density associated with the positive traveling fields of (4-27) and (4-29a)
can be written as

S+ = 1

2
Re

(
E+ × H+∗) = 1

2
Re

(
âx E+

0 e−αz e−jβz × ây
E+∗

0

η∗
c

e−αz e+jβz

)
S+ = âz

|E+
0 |2
2

e−2αz Re

[
1

η∗
c

]
(4-31)

Individually each term of (4-27) or (4-29a) represents a traveling wave in its respective direc-
tion. The magnitude of each term in (4-27) takes the form

|E+
x (z ) | = |E+

0 |e−αz (4-32a)

|E−
x (z ) | = |E−

0 |e+αz (4-32b)

which, when plotted for −λ ≤ z ≤ +λ and |�| = 0.2 through 1 (in increments of 0.2), take the
form shown in Figure 4-7a .

Collectively, both terms in each of the fields in (4-27) or (4-29a) represent a standing wave.
Using the procedure outlined in Section 4.2.1D, (4-27) can also be written as

Ex (z ) =
√(

E+
0

)2
e−2αz + (

E−
0

)2
e+2αz + 2E+

0 E−
0 cos (2βz )

× exp

{
−j tan−1

[
E+

0 e−αz − E−
0 e+αz

E+
0 e−αz + E−

0 e+αz
tan (βz )

]}
(4-33)

The standing wave pattern is given by the amplitude term of

|Ex (z )| =
√(

E+
0

)2
e−2αz + (

E−
0

)2
e+2αz + 2E+

0 E−
0 cos (2βz ) (4-33a)

which for |�| = E−
0 /E+

0 = 0.2 through 1, in increments of 0.2, is shown plotted in Figure 4-7b
in the range −λ ≤ z ≤ λ when f = 100 MHz, εr = 2.56, μr = 1, and σ = 0.03 S/m.

The distance the wave must travel in a lossy medium to reduce its value to e−1 = 0.368 = 36.8%
is defined as the skin depth δ. For each of the terms of (4-27) or (4-29a), this distance is

δ = skin depth = 1

α
= 1

ω
√

με
{

1
2

[√
1 + (σ/ωε)2 − 1

]}1/2 m (4-34)

In summary, the attenuation constant α, phase constant β, wave Zw and intrinsic ηc impedances,
wavelength λ, velocity v, and skin depth δ for a uniform plane wave traveling in a lossy medium
are listed in the second column of Table 4-1. The same expressions are valid for plane and TEM
waves. Simpler expressions for each can be derived depending upon the value of the (σ/ωε)2

ratio. Media whose (σ/ωε)2 is much less than unity [(σ/ωε)2 � 1] are referred to as good
dielectrics and those whose (σ/ωε)2 is much greater than unity [(σ/ωε)2 � 1] are referred to
as good conductors [6]; each will now be discussed.



TRANSVERSE ELECTROMAGNETIC MODES IN LOSSY MEDIA 141

8E+
0

er
s

6E+
0

4E+
0

E+
x

(a)

(b)

2E+
0

10E+
0

0

8E+
0

6E+
0

4E+
0

2E+
0

10E+
0

0

−λ −0.75λ −0.5λ −0.25λ 0.25λ 0.5λ λ z0.75λ0

−λ −0.75λ −0.5λ −0.25λ 0.25λ 0.5λ λ z0.75λ0

Ex
−

, |Γ| = 1

M
ag

ni
tu

de
 | E

x+ (z
)| ,

| E
x− (z

)|

Ex
−

, |Γ| = 0.8

Ex
−

, |Γ| = 0.6

Ex
−

, |Γ| = 0.4

Ex
−

, |Γ| = 0.2

|Ex|, |Γ| = 1

M
ag

ni
tu

de
 | E

x(
z)

|

|Ex|, |Γ| = 0.8

|Ex|, |Γ| = 0.6

|Ex|, |Γ| = 0.4

|Ex|, |Γ| = 0.2

= 2.56
= 0.03 S/m

er
s

= 2.56
= 0.03 S/m

Figure 4-7 Wave patterns of uniform plane waves in a lossy medium. (a) Traveling. (b) Standing.
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TABLE 4-1 Propagation constant, wave impedance, wavelength, velocity, and skin depth of TEM
wave in lossy media

Good Good
dielectric conductor

Exact
( σ

ωε

)2 � 1
( σ

ωε

)2 � 1

Attenuation
constant α

= ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2 − 1

]}1/2

� σ

2

√
μ

ε
�

√
ωμσ

2

Phase
constant β

= ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2 + 1

]}1/2

� ω
√

με �
√

ωμσ

2

Wave Zw

intrinsic ηc
impedances
Zw = ηc

=
√

jωμ

σ + jωε
�

√
μ

ε
�

√
ωμ

2σ
(1 + j )

Wavelength λ = 2π

β
� 2π

ω
√

με
� 2π

√
2

ωμσ

Velocity v = ω

β
� 1√

με
�

√
2ω

μσ

Skin depth δ = 1

α
� 2

σ

√
ε

μ
�

√
2

ωμσ

A. Good Dielectrics [(σ/ωε)2 � 1] For source-free lossy media, Maxwell’s equation in dif-
ferential form as derived from Ampere’s law takes the form, by referring to Table 1-4, of

∇ × H = Jc + Jd = σE + jωεE = (σ + jωε) E (4-35)

where Jc and Jd represent, respectively, the conduction and displacement current densities. When
σ/ωε � 1, the displacement current density is much greater than the conduction current density;
when σ/ωε � 1 the conduction current density is much greater than the displacement current
density. For each of these two cases, the exact forms of the field parameters of Table 4-1 can be
approximated by simpler forms. This will be demonstrated next.

For a good dielectric [when (σ/ωε)2 � 1], the exact expression for the attenuation constant
of (4-28c) can be written using the binomial expansion and it takes the form

α = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
− 1

]}1/2

α = ω
√

με

{
1

2

[(
1 + 1

2

( σ

ωε

)2
− 1

8

( σ

ωε

)4
· · ·

)
− 1

]}1/2

(4-36)

Retaining only the first two terms of the infinite series, (4-36) can be approximated by

α � ω
√

με

[
1

4

( σ

ωε

)2
]1/2

= σ

2

√
μ

ε
(4-36a)

In a similar manner it can be shown that by following the same procedure but only retaining
the first term of the infinite series, the exact expression for β of (4-28d) can be approximated
by

β � ω
√

με (4-37)
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For good dielectrics, the wave and intrinsic impedances of (4-30) can be approximated by

Zw = ηc =
√

jωμ

σ + jωε
=

√
jωμ/jωε

σ/jωε + 1
�

√
μ

ε
(4-38)

while the skin depth can be represented by

δ = 1

α
� 2

σ

√
ε

μ
(4-39)

These and other approximate forms for the parameters of good dielectrics are summarized on the
third column of Table 4-1.

B. Good Conductors [(σ/ωε)2 � 1] For good conductors, the exact expression for the atten-
uation constant of (4-28c) can be written using the binomial expansion and takes the form

α = ω
√

με

{
1

2

[√( σ

ωε

)2
+ 1 − 1

]}1/2

= ω
√

με

{
1

2

[
σ

ωε

(
1 + 1

(σ/ωε)2

)1/2

− 1

]}1/2

α = ω
√

με

{
1

2

[
σ

ωε
+ 1

2

1

σ/ωε
− 1

8

1

(σ/ωε)3
+ · · · − 1

]}1/2

(4-40)

Retaining only the first term of the infinite series expansion, (4-40) can be approximated by

α � ω
√

με

(
1

2

σ

ωε

)1/2

=
√

ωμσ

2
(4-40a)

Following a similar procedure, the phase constant of (4-28d) can be approximated by

β �
√

ωμσ

2
(4-41)

which is identical to the approximate expression for the attenuation constant of (4-40a).
For good conductors, the wave and intrinsic impedances of (4-30) can be approximated by

Zw = ηc =
√

jωμ

σ + jωε
=

√
jωμ/ωε

σ/ωε + j
�

√
j
ωμ

σ
=

√
ωμ

2σ
(1 + j ) (4-42)

whose real and imaginary parts are identical. For the same conditions, the skin depth can be
approximated by

δ = 1

α
�

√
2

ωμσ
(4-43)

This is the most widely recognized form for the skin depth.

4.3.2 Uniform Plane Waves in an Unbounded Lossy Medium—Oblique Angle

For lossy media the difference between principal axes propagation and propagation at oblique
angles is that the propagation constant γr along the direction β of propagation must be decomposed
into its directional components along the principal axes of the coordinate system. In addition,
since the propagation constant γ has real (α) and imaginary (β) parts, constant amplitude and
constant phase planes are associated with the wave. As discussed in Section 4.2.2C and illustrated
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in Figure 4-6, the constant phase planes for a uniform plane wave are planes that are parallel to
each other, perpendicular to the direction of propagation, and coincide with the constant amplitude
planes. The constant amplitude planes are planes over which the amplitude remains constant. For
a uniform plane wave traveling in a lossy medium, the constant amplitude planes are also parallel
to each other, are perpendicular to the direction of travel, and coincide with the constant phase
planes. This is illustrated in Figure 4-6 for a uniform plane wave traveling at an oblique angle
in a lossless medium.

Let us assume that a uniform plane wave that is also TEy is traveling in a lossy medium at
an angle θi , as shown in Figure 4-4a . Following a procedure similar to the lossless case and
referring to (4-17a) and (4-17b), the propagation constant of (4-28) can now be written for the
positive and negative traveling waves as

γ+ = γ (âx sin θi + âz cos θi ) = (α + jβ) (âx sin θi + âz cos θi ) (4-44a)

γ− = −γ (âx sin θi + âz cos θi ) = − (α + jβ) (âx sin θi + âz cos θi ) (4-44b)

where the real (α) and imaginary (β) parts of γ are given by (4-28c) and (4-28d), respectively.
Using (4-44a) and (4-44b), the electric and magnetic fields can be written, by referring to (4-17)
through (4-18c), as

E = E+
0 (âx cos θi − âz sin θi ) e−γ+ • r + E−

0 (âx cos θi − âz sin θi ) e−γ− • r

E = E+
0 (âx cos θi − âz sin θi ) e−(α+jβ)(x sin θi +z cos θi )

+E−
0 (âx cos θi − âz sin θi ) e+(α+jβ)(x sin θi +z cos θi ) (4-45a)

H = ây

[
E+

0

ηc

e−(α+jβ)(x sin θi +z cos θi ) − E−
0

ηc

e+(α+jβ)(x sin θi +z cos θi )

]
(4-45b)

Because the wave is a uniform plane wave in the β direction of propagation, the wave
impedance Zwr in the direction of propagation is equal to the intrinsic impedance ηc of the
lossy medium given by (4-30) or

Zwr = ηc =
√

jωμ

σ + jωε
(4-46)

However, the directional impedances in the x and z directions are given, by referring to (4-20a)
and (4-20b), by

Z +
x = − E+

z

H +
y

= ηc sin θi = Z −
x = E−

z

H −
y

(4-47a)

Z +
z = E+

x

H +
y

= ηc cos θi = Z −
z = − E−

x

H −
y

(4-47b)

According to (4-22) through (4-24) the phase and energy velocities in the principal β direction
of travel and in the z direction are given, respectively, by

vr = vpr = ver = v = ω

β
(4-48a)

vpz = v

cos θi
= ω

β cos θi
≥ v = ω

β
(4-48b)

vez = v cos θi = ω

β
cos θi ≤ v = ω

β
(4-48c)
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where β for a lossy medium is given by (4-28d) or

β = ω
√

με

{
1

2

[√
1 +

( σ

ωε

)2
+ 1

]}1/2

(4-48d)

As for the lossless medium, the product of the phase and energy velocities is equal to the square
of the velocity of light v in the lossy medium, or

vprver = vpz vez = v2 (4-48e)

Using the procedure followed to derive (4-26) through (4-26b) and (4-31), the average power
density along the principal direction β of travel and the directional power densities along the x
and z directions can be written for the fields of (4-45a) and (4-45b) as

(
S+

av

)
r = (âx sin θi + âz cos θi )

∣∣E+
0

∣∣2

2
e−2α(x sin θi +z cos θi )Re

[
1

η∗
c

]

= âr

∣∣E+
0

∣∣2

2
e−2αr Re

[
1

η∗
c

]
(4-49a)

(
S +

av

)
x = sin θi

∣∣E+
0

∣∣2

2
e−2α(x sin θi +z cos θi )Re

[
1

η∗
c

]

= sin θi

∣∣E+
0

∣∣2

2
e−2αr Re

[
1

η∗
c

]
(4-49b)

(
S +

av

)
z = cos θi

∣∣E+
0

∣∣2

2
e−2α(x sin θi +z cos θi )Re

[
1

η∗
c

]

= cos θi

∣∣E+
0

∣∣2

2
e−2αr Re

[
1

η∗
c

]
(4-49c)

Example 4-4

For a TMy wave traveling in a lossy medium at an oblique angle θi , derive expressions for the fields,
wave impedances, phase and energy velocities, and average power densities.

Solution: The solution to this problem can be accomplished by following the procedure used to derive
the expressions of the fields and other wave characteristics of a TEy wave traveling at an oblique angle
in a lossy medium, as outlined in this section, and referring to the solution of Examples 4-2 and 4-3.
Doing this we can write the fields of a TMy traveling in a lossy medium at an oblique angle θi , the
coordinate system of which is illustrated in Figure 4-4b, as

E = E+ + E− = ây
[
E+

0 e−(α+jβ)(x sin θi +z cos θi ) + E−
0 e+(α+jβ)(x sin θi +z cos θi )

]
H = H+ + H− = E+

0

ηc
(−âx cos θi + âz sin θi ) e−(α+jβ)(x sin θi +z cos θi )

+E−
0

ηc
(âx cos θi − âz sin θi ) e+(α+jβ)(x sin θi +z cos θi )
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In addition, the wave impedances are given, by referring to (4-21a) and (4-21b), by

Z +
x = E+

y

H +
z

= ηc

sin θi
= Z −

x = − E−
y

H −
z

Z +
z = − E+

y

H +
x

= ηc

cos θi
= Z −

z = E−
y

H −
x

The phase and energy velocities, and their relationships, are the same as those for the TEy wave,
as given by (4-48a) through (4-48e). Similarly, the average power densities are those given by
(4-49a) through (4-49c).

4.4 POLARIZATION

According to the IEEE Standard Definitions for Antennas [7, 8], the polarization of a radiated
wave is defined as “that property of a radiated electromagnetic wave describing the time-varying
direction and relative magnitude of the electric field vector; specifically, the figure traced as a
function of time by the extremity of the vector at a fixed location in space, and the sense in
which it is traced, as observed along the direction of propagation.” In other words, polarization
is the curve traced out, at a given observation point as a function of time, by the end point of the
arrow representing the instantaneous electric field. The field must be observed along the direction
of propagation. A typical trace as a function of time is shown in Figure 4-8 [8].

0

2p

4p

6p

6p

wt

wt

4p

2p

�y

�x

�x

Figure 4-8 Rotation of a plane electromagnetic wave at z = 0 as a function of time. (Source: C. A.
Balanis, Antenna Theory: Analysis and Design . 3rd Edition. Copyright © 2005, John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc.).
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Polarization may be classified into three categories: linear, circular, and elliptical [8]. If the
vector that describes the electric field at a point in space as a function of time is always directed
along a line, which is normal to the direction of propagation, the field is said to be linearly polar-
ized. In general, however, the figure that the electric field traces is an ellipse, and the field is said
to be elliptically polarized. Linear and circular polarizations are special cases of elliptical, and
they can be obtained when the ellipse becomes a straight line or a circle, respectively. The figure
of the electric field is traced in a clockwise (CW) or counterclockwise (CCW) sense. Clockwise
rotation of the electric field vector is also designated as right-hand polarization and counterclock-
wise as left-hand polarization . In Figure 4-9 we show the figure traced by the extremity of the
time-varying field vector for linear, circular, and elliptical polarizations.

The mathematical details for defining linear, circular, and elliptical polarizations follow.

(a)

(c)

(b)

�y �y

�x

�y

�x

�x

z

z

z

Figure 4-9 Polarization figure traces of an electric field extremity as a function of time for a fixed position .
(a) Linear. (b) Circular. (c) Elliptical.



148 WAVE PROPAGATION AND POLARIZATION

4.4.1 Linear Polarization

Let us consider a harmonic plane wave, with x and y electric field components, traveling in the
positive z direction (into the page), as shown in Figure 4-10 [8]. The instantaneous electric and
magnetic fields are given by

� = âx �x + ây �y = Re
[
âx E+

x ej (ωt−βz ) + ây E+
y ej (ωt−βz )

]
= âx E+

x0
cos (ωt − βz + φx ) + ây E+

y0
cos

(
ωt − βz + φy

)
(4-50a)

� = ây �y + âx �x = Re

[
ây

E+
x

η
ej (ωt−βz ) − âx

E+
y

η
ej (ωt−βz )

]

= ây

E+
x0

η
cos (ωt − βz + φx ) − âx

E+
y0

η
cos

(
ωt − βz + φy

)
(4-50b)

where E+
x , E+

y are complex and E+
x0

, E+
y0

are real.
Let us now examine the variation of the instantaneous electric field vector � as given by

(4-50a) at the z = 0 plane. Other planes may be considered, but the z = 0 plane is chosen for
convenience and simplicity. For the first example, let

E+
y0

= 0 (4-51)

in (4-50a). Then

�x = E+
x0

cos (ωt + φx )

�y = 0 (4-51a)

The locus of the instantaneous electric field vector is given by

� = âx E+
x0

cos (ωt + φx ) (4-51b)

which is a straight line, and it will always be directed along the x axis at all times, as shown in
Figure 4-10. The field is said to be linearly polarized in the x direction .

E + cos (wt + fx)0x

z �y

�x

Figure 4-10 Linearly polarized field in the x direction.
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Example 4-5

Determine the polarization of the wave given by (4-50a) when E+
x0

= 0.

Solution: Since
E+

x0
= 0

then

�x = 0

�y = E+
y0

cos
(
ωt + φy

)
The locus of the instantaneous electric field vector is given by

� = ây E+
y0

cos
(
ωt + φy

)
which again is a straight line but directed along the y axis at all times, as shown in Figure 4-11. The
field is said to be linearly polarized in the y direction .

E + cos (wt + fy)y0

�y

�x

Figure 4-11 Linearly polarized field in the y direction.

Example 4-6

Determine the polarization and direction of polarization of the wave given by (4-50a) when φx =φy = φ.

Solution: Since
φx = φy = φ

then

�x = E+
x0

cos (ωt + φ)

�y = E+
y0

cos (ωt + φ)
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The amplitude of the electric field vector is given by

� =
√

�2
x + �2

y =
√(

E+
x0

)2 + (
E+

y0

)2
cos (ωt + φ)

which is a straight line directed at all times along a line that makes an angle ψ with the x axis as shown
in Figure 4-12. The angle ψ is given by

ψ = tan−1
[

�y

�x

]
= tan−1

[
E+

y0

E+
x0

]
The field is said to be linearly polarized in the ψ direction .

E + cos (wt + f)y0

E + cos (wt + f)x0

E ++ cos (wt + f) ( y0
2E +

x0
2

z

)

�y

�x

y

Figure 4-12 Linearly polarized field in the ψ direction.

It is evident from the preceding examples that a time-harmonic field is linearly polarized at a
given point in space if the electric field (or magnetic field ) vector at that point is oriented along
the same straight line at every instant of time. This is accomplished if the field vector (electric or
magnetic) possesses (a) only one component or (b) two orthogonal linearly polarized components
that are in time phase or integer multiples of 180◦ out of phase.

4.4.2 Circular Polarization

A wave is said to be circularly polarized if the tip of the electric field vector traces out a circular
locus in space. At various instants of time, the electric field intensity of such a wave always has
the same amplitude and the orientation in space of the electric field vector changes continuously
with time in such a manner as to describe a circular locus [8, 9].

A. Right-Hand (Clockwise) Circular Polarization A wave has right-hand circular polar-
ization if its electric field vector has a clockwise sense of rotation when it is viewed along the
axis of propagation . In addition, the electric field vector must trace a circular locus if the wave
is to have also a circular polarization.
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Let us examine the locus of the instantaneous electric field vector (�) at the z = 0 plane at
all times. For this particular example, let in (4-50a)

φx = 0

φy = −π/2

E+
x0

= E+
y0

= ER (4-52)

Then

�x = ER cos(ωt)

�y = ER cos
(
ωt − π

2

)
= ER sin(ωt) (4-52a)

The locus of the amplitude of the electric field vector is given by

� =
√

�2
x + �2

y =
√

E 2
R(cos2 ωt + sin2 ωt) = ER (4-52b)

and it is directed along a line making an angle ψ with the x axis, which is given by

ψ = tan−1

[
�y

�x

]
= tan−1

[
ER sin(ωt)

ER cos(ωt)

]
= tan−1[tan(ωt)] = ωt (4-52c)

If we plot the locus of the electric field vector for various times at the z = 0 plane, we see that
it forms a circle of radius ER and it rotates clockwise with an angular frequency ω, as shown in
Figure 4-13. Thus the wave is said to have a right-hand circular polarization . Remember that the
rotation is viewed from the “rear” of the wave in the direction of propagation. In this example,
the wave is traveling in the positive z direction (into the page) so that the rotation is examined
from an observation point looking into the page and perpendicular to it.

We can write the instantaneous electric field vector as

� = Re
[
âx ERej (ωt−βz ) + ây ERej (ωt−βz−π/2)

]
= ERRe

{[
âx − j ây

]
ej (ωt−βz )

}
(4-52d)

We note that there is a 90◦ phase difference between the two orthogonal components of the
electric field vector.

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2
z

wt = p/4

wt = 3p/4

wt = p

�y

�x

Figure 4-13 Right-hand circularly polarized wave.
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Example 4-7

If φx = +π/2, φy = 0, and E+
x0

= E+
y0

= ER, determine the polarization and sense of rotation of the
wave of (4-50a).

Solution: Since

φx = +π

2
φy = 0

E+
x0

= E+
y0

= ER

then

�x = ER cos
(
ωt + π

2

)
= −ER sin ωt

�y = ER cos(ωt)

and the locus of the amplitude of the electric field vector is given by

� =
√

�2
x + �2

y =
√

E 2
R(cos2 ωt + sin2 ωt) = ER

The angle ψ along which the field is directed is given by

ψ = tan−1
[

�y

�x

]
= tan−1

[
−ER cos(ωt)

ER sin(ωt)

]
= tan−1 [− cot(ωt)] = ωt + π

2

The locus of the field vector is a circle of radius ER, and it rotates clockwise with an angular frequency
ω as shown in Figure 4-14; hence, it is a right-hand circular polarization .

The expression for the instantaneous electric field vector is

� = Re
[
âx ERej (ωt−βz+π/2) + ây ERej (ωt−βz )

]
= ERRe

{[
j âx + ây

]
ej (ωt−βz )

}

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2

z

wt = p/4wt = 3p/4

wt = p

�y

�x

Figure 4-14 Right-hand circularly polarized wave.
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Again we note a 90◦ phase difference between the orthogonal components.
From the previous discussion we see that a right-hand circular polarization can be achieved

if and only if its two orthogonal linearly polarized components have equal amplitudes and a 90◦
phase difference of one relative to the other. The sense of rotation (clockwise here) is determined by
rotating the phase-leading component (in this instance �x ) toward the phase-lagging component
(in this instance �y ). The field rotation must be viewed as the wave travels away from the observer .

B. Left-Hand (Counterclockwise) Circular Polarization If the electric field vector has a
counterclockwise sense of rotation, the polarization is designated as left-hand polarization . To
demonstrate this, let in (4-50a)

φx = 0

φy = π

2

E+
x0

= E+
y0

= EL (4-53)

then

�x = EL cos(ωt)

�y = EL cos
(
ωt + π

2

)
= −EL sin(ωt) (4-53a)

and the locus of the amplitude is

� =
√

�2
x + �2

y =
√

E 2
L(cos2 ωt + sin2 ωt) = EL (4-53b)

The angle ψ is given by

ψ = tan−1

[
�y

�x

]
= tan−1

[−EL sin(ωt)

EL cos(ωt)

]
= −ωt (4-53c)

The locus of the field vector is a circle of radius EL, and it rotates counterclockwise with an
angular frequency ω as shown in Figure 4-15; hence, it is a left-hand circular polarization .

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2z

wt = p/4

wt = 3p/4

wt = p

�y

�x

Figure 4-15 Left-hand circularly polarized wave.
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The instantaneous electric field vector can be written as

� = Re
[
âx ELej (ωt−βz ) + ây ELej (ωt−βz+π/2)

]
= ELRe

{[
âx + j ây

]
ej (ωt−βz )

}
(4-53d)

In (4-53d) we note a 90◦ phase advance of the �y component relative to the �x component.

Example 4-8

Determine the polarization and sense of rotation of the wave given by (4-50a) if φx = −π/2, φy = 0,
and E+

x0
= E+

y0
= EL.

Solution: Since

φx = −π

2
φy = 0

E+
x0

= E+
y0

= EL

then

�x = EL cos
(
ωt − π

2

)
= EL sin(ωt)

�y = EL cos(ωt)

and the locus of the amplitude is

� =
√

�2
x + �2

y =
√

E 2
L(sin2 ωt + cos2 ωt) = EL

The angle ψ is given by

ψ = tan−1
[

�y

�x

]
= tan−1

[
EL cos(ωt)

EL sin(ωt)

]
= tan−1 [cot(ωt)] = π

2
− ωt

The locus of the electric field vector is a circle of radius EL, and it rotates counterclockwise with an
angular frequency ω as shown in Figure 4-16; hence, it is a left-hand circular polarization . For this case
we can write the electric field as

wt = 0

wt = 5p/4

y

wt = p/2

wt = 7p/4

wt = 3p/2

z

wt = p/4wt = 3p/4

wt = p

�y

�x

Figure 4-16 Left-hand circularly polarized wave.
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� = Re
[
âx ELej (ωt−βz−π/2) + ây ELej (ωt−βz )

]
= ELRe

{[−j âx + ây
]

ej (ωt−βz )
}

and we note a 90◦ phase delay of the �x component relative to �y .

From the previous discussion we see that left-hand circular polarization can be achieved if
and only if its two orthogonal components have equal amplitudes and odd multiples of 90◦ phase
difference of one component relative to the other. The sense of rotation (counterclockwise here)
is determined by rotating the phase-leading component (in this instance �y ) toward the phase-
lagging component (in this instance �x ). The field rotation must be viewed as the wave travels
away from the observer .

The necessary and sufficient conditions for circular polarization are the following:

1. The field must have two orthogonal linearly polarized components.
2. The two components must have the same magnitude.
3. The two components must have a time-phase difference of odd multiples of 90◦.

The sense of rotation is always determined by rotating the phase-leading component toward
the phase-lagging component and observing the field rotation as the wave is traveling away from
the observer. The rotation of the phase-leading component toward the phase-lagging component
should be done along the angular separation between the two components that is less than 180◦.
Phases equal to or greater than 0◦ and less than 180◦ should be considered leading whereas those
equal to or greater than 180◦ and less than 360◦ should be considered lagging .

4.4.3 Elliptical Polarization

A wave is said to be elliptically polarized if the tip of the electric field vector traces, as a
function of time, an elliptical locus in space. At various instants of time the electric field vector
changes continuously with time in such a manner as to describe an elliptical locus. It is right-hand
elliptically polarized if the electric field vector of the ellipse rotates clockwise, and it is left-hand
elliptically polarized if the electric field vector of the ellipse rotates counterclockwise [8, 10–14].

Let us examine the locus of the instantaneous electric field vector (�) at the z = 0 plane at
all times. For this particular example, let in (4-50a)

φx = π

2
φy = 0

E+
x0

= (ER + EL)

E+
y0

= (ER − EL) (4-54)

Then,

�x = (ER + EL) cos
(
ωt + π

2

)
= − (ER + EL) sin ωt

�y = (ER − EL) cos(ωt) (4-54a)
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We can write the locus for the amplitude of the electric field vector as

�2 = �2
x + �2

y = (ER + EL)2 sin2 ωt + (ER − EL)2 cos2 ωt

= E 2
R sin2 ωt + E 2

L sin2 ωt + 2EREL sin2 ωt

+E 2
R cos2 ωt + E 2

L cos2 ωt − 2EREL cos2 ωt

�2
x + �2

y = E 2
R + E 2

L + 2EREL
[
sin2 ωt − cos2 ωt

]
(4-54b)

However,

sin ωt = −�x/(ER + EL)

cos ωt = �y/(ER − EL) (4-54c)

Substituting (4-54c) into (4-54b) reduces to{
�x

ER + EL

}2

+
{

�y

ER − EL

}2

= 1 (4-54d)

which is the equation for an ellipse with the major axis |�|max = |ER + EL| and the minor axis
|�|min = |ER − EL|. As time elapses, the electric vector rotates and its length varies with its tip
tracing an ellipse, as shown in Figure 4-17. The maximum and minimum lengths of the electric
vector are the major and minor axes, given by

|�|max = |ER + EL|, when ωt = (2n + 1)
π

2
, n = 0, 1, 2, . . . (4-54e)

|�|min = |ER − EL|, when ωt = nπ , n = 0, 1, 2, . . . (4-54f)

The axial ratio (AR) is defined to be the ratio of the major axis (including its sign) of the
polarization ellipse to the minor axis, or

AR = −�max

�min
= −2(ER + EL)

2(ER − EL)
= − (ER + EL)

(ER − EL)
(4-54g)

where ER and EL are positive real quantities. As defined in (4-54g), the axial ratio AR can take
positive (for left-hand polarization) or negative (for right-hand polarization) values in the range
1 ≤ |AR| ≤ ∞. The instantaneous electric field vector can be written as

� = Re
{
âx [ER + EL] ej (ωt−βz+π/2) + ây [ER − EL] ej (ωt−βz )

}
= Re

{[
âx j (ER + EL) + ây(ER − EL)

]
ej (ωt−βz )

}
� = Re

{[
ER(j âx + ây) + EL(j âx − ây)

]
ej (ωt−βz )

}
(4-54h)

From (4-54h) we see that we can represent an elliptical wave as the sum of a right-hand [first term
of (4-54h)] and a left-hand [second term of (4-54h)] circularly polarized waves with amplitudes
ER and EL, respectively. If ER > EL, the axial ratio will be negative and the right-hand circular
component will be stronger than the left-hand circular component. Thus, the electric vector rotate
in the same direction as that of the right-hand circularly polarized wave, producing a right-hand
elliptically polarized wave, as shown in Figure 4-17a . If EL > ER, the axial ratio will be positive
and the left-hand circularly polarized component will be stronger than the right-hand circularly
polarized component. The electric field vector will rotate in the same direction as that of the
left-hand circularly polarized component, producing a left-hand elliptically polarized wave, as
shown in Figure 4-17b. The sign of the axial ratio carries information on the direction of rotation
of the electric field vector.
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wt = p

wt = p

wt = 0

wt = 0

wt = p/2

wt = p/2

(a)

(b)

wt = 3p/2

wt = 3p/2

ER + EL

y

z

y

z

ER − EL

ER + EL

�y

�x

�x

�y

�min =

ER − EL�min =

�max =

�max =

Figure 4-17 Right- and left-hand elliptical polarizations with major axis along the x axis. (a) Right-hand
(clockwise) when ER > EL. (b) Left-hand (counterclockwise) when ER < EL.

An analogous situation exists when

φx = π

2
φy = 0

E+
x0

= (ER − EL) (4-55)

E+
y0

= (ER + EL)
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wt = p

wt = p

(b)

(a)

wt = 0

wt = 0

wt = p/2

wt = p/2

wt = 3p/2

wt = 3p/2

z

z

y

y

ER + EL�max =

ER + EL�max

�x

�x

�y

�y

=

ER − EL�min =

ER − EL�min =

Figure 4-18 Right- and left-hand elliptical polarizations with major axis along the y axis. (a) Right-hand
(clockwise) when ER > EL. (b) Left-hand (counterclockwise) when ER < EL.

The polarization loci are shown in Figure 4-18a and 4-18b when ER > EL and ER < EL, respec-
tively.

From (4-54e) and (4-54f), it can be seen that the component of � measured along the major
axis of the polarization ellipse is 90◦ out of phase with the component of � measured along the
minor axis. Also with the aid of (4-54b), it can be shown that the electric vector rotates through
90◦ in space between the instants of time given by (4-54e) and (4-54f) when the vector has
maximum and minimum lengths, respectively. Thus the major and minor axes of the polarization
ellipse are orthogonal in space, just as we might anticipate.

Since linear polarization is a special kind of elliptical polarization, we can represent a lin-
ear polarization as the sum of a right- and a left-hand circularly polarized components of
equal amplitudes . We see that for this case (ER = EL), (4-54h) will degenerate into a linear
polarization.
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Figure 4-19 Rotation of a plane electromagnetic wave and its tilted ellipse at z = 0 as a function of time.

A more general orientation of an elliptically polarized locus is the tilted ellipse of Figure 4-19.
This is representative of the fields of (4-50a) when

	φ = φx − φy �= nπ

2
n = 0, 2, 4 . . .

≥ 0

{
for CW if ER > EL

for CCW if ER < EL

(4-56a)

≤ 0

{
for CW if ER < EL

for CCW if ER > EL

(4-56b)

E+
x0

= ER + EL

E+
y0

= ER − EL (4-56c)

Thus the major and minor axes of the ellipse do not, in general, coincide with the principal axes
of the coordinate system unless the magnitudes are not equal and the phase difference between
the two orthogonal components is equal to odd multiples of ±90◦.
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The ratio of the major to the minor axes, which is defined as the axial ratio (AR), is equal
to [8]

AR = ±major axis

minor axis
= ± OA

OB
, 1 ≤ |AR| ≤ ∞ (4-57)

where

OA =
[

1

2

{
(E+

x0
)2 + (E+

y0
)2 +

[
(E+

x0
)4 + (E+

y0
)4 + 2(E+

x0
)2(E+

y0
)2 cos(2	φ)

]1/2
}]1/2

(4-57a)

OB =
[

1

2

{
(E+

x0
)2 + (E+

y0
)2 −

[
(E+

x0
)4 + (E+

y0
)4 + 2(E+

x0
)2(E+

y0
)2 cos(2	φ)

]1/2
}]1/2

(4-57b)

E+
x0

and E+
y0

are given by (4-56c). The plus (+) sign in (4-57) is for left-hand and the minus (−)
sign is for right-hand polarization.

The tilt of the ellipse, relative to the x axis , is represented by the angle τ given by

τ = π

2
− 1

2
tan−1

[
2E+

x0
E+

y0

(E+
x0 )

2 − (E+
y0 )

2
cos(	φ)

]
(4-57c)

4.4.4 Poincaré Sphere

The polarization state, defined here as P , of any wave can be uniquely represented by a point on
the surface of a sphere [15–19]. This is accomplished by either of the two pairs of angles (γ , δ)
or (ε, τ). By referring to (4-50a) and Figure 4-20a , we can define the two pairs of angles:

(γ , δ) set

γ = tan−1

[
E+

y0

E+
x0

]
or γ = tan−1

[
E+

x0

E+
y0

]
, 0◦ ≤ γ ≤ 90◦ (4-58a)

δ = φy − φx = phase difference between �y and �x , −180◦ ≤ δ ≤ 180◦

(4-58b)

where 2γ is the great-circle angle drawn from a reference point on the equator and δ is the
equator to great-circle angle;

(ε, τ) set

ε = cot−1(AR) ⇒ AR = cot(ε), −45◦ ≤ ε ≤ +45◦ (4-59a)

τ = tilt angle, 0◦ ≤ τ ≤ 180◦ (4-59b)

where

2ε = latitude

2τ = longitude

In (4-58a) the appropriate ratio is the one that satisfies the angular limits of all the Poincaré
sphere angles (especially those of ε). The axial ratio AR is positive for left-hand polarization and
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2e (latitude)

Polarization state P of wave
[P (g,d) or P(t,e)]
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z

z
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(a)

(b)

Elliptical polarization
(left hand; t= 22.5°, e= 22.5°)

Elliptical polarization
(left hand; t= 0°, e= 22.5°)

Circular polarization
(left hand; e = 45°)

Elliptical polarization
(left hand; t= 45°, e= 22.5°)

Linear polarization
(t= 0°, e= 0°)

Linear polarization
(t= 45°, e= 0°)

Linear polarization
(t= 22.5°, e= 0°)

Figure 4-20 Poincaré sphere for the polarization state of an electromagnetic wave. (Source: J. D. Kraus,
Electromagnetics , 1984, McGraw-Hill Book Co.). (a) Poincaré sphere. (b) Polarization state.

negative for right-hand polarization . Some polarization states are displayed on the first octant of
the Poincaré sphere in Figure 4-20b. The polarization states on a planar surface representation
(projection) of the Poincaré sphere (−45◦ ≤ ε ≤ +45◦ , 0◦ ≤ τ ≤ 180◦) are shown in Figure 4-21.

For the polarization ellipse of Figure 4-19, the two sets of angles are related geometrically as
shown in Figure 4-20. Analytically, it can be shown through spherical trigonometry [20] that the
two pairs of angles (γ , δ) and (ε, τ ) are related by

cos(2γ ) = cos(2ε) cos(2τ)

tan(δ) = tan(2ε)

sin(2τ)

(4-60a)

(4-60b)
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Right circular polarization

e= −45°

e= 0°

t= 0° t= 45° t= 90°  t= 135°  t= 180°

e= 45°

e= −22½°

e= 22½°

Right elliptical

polarization

polarization

Linear polarization

Left elliptical

Left circular polarization

Figure 4-21 Polarization states of electromagnetic waves on a planar surface projection of a Poincaré
sphere. (Source: J. D. Kraus, Electromagnetics , 1984, McGraw-Hill Book Co.).

or

sin(2ε) = sin(2γ ) sin(δ)

tan(2τ) = tan(2γ ) cos(δ)

(4-61a)

(4-61b)

Thus one set can be obtained by knowing the other.
It is apparent from Figure 4-20 that the linear polarization is always found along the equator; the

right-hand circular resides along the south pole and the left-hand circular along the north pole.
The remaining surface of the sphere is used to represent elliptical polarization with left-hand
elliptical in the upper hemisphere and right-hand elliptical on the lower hemisphere.

Because the Poincaré sphere parameter pairs (γ , δ) and (ε, τ ) are related by transcendental
functions, of (4-60a) and (4-60b), there may be some ambiguity at which quadrant should the
angles be chosen. The angles should be selected to each satisfy respectively the range of values
given by (4-58a) and (4-58b), and (4-57c), and each set should represent the same point on
the Poincaré sphere. Also the range of values of the axial ratio (AR) should be 1 ≤ |AR| ≤ ∞,
with positive values to represent CCW (left-hand) polarization and negative values to represent
CW (right-hand) polarization. A MATLAB computer program, Polarization_Propag, has been
written and it is part of the website that accompanies this book.
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Example 4-9

Determine the point on the Poincaré sphere of Figure 4-20 when the wave represented by (4-50a) is
such that

�x = E+
x0

cos(ωt − βz + φx )

�y = 0

Solution: Using (4-58a) and (4-58b)

γ = tan−1

[
E+

y0

E+
x0

]
= tan−1

[
0

E+
x0

]
= 0◦

and δ could be of any value, i.e., −180◦ ≤ δ ≤ 180◦. The values of ε and τ can now be obtained from
(4-61a) and (4-61b), and they are equal to

2ε = sin−1 [
sin(2γ ) sin(δ)

] = sin−1(0) = 0◦

2τ = tan−1 [
tan(2γ ) cos(δ)

] = tan−1(0) = 0◦

It is apparent that for this wave, which is obviously linearly polarized, the polarization state (point) is
at the reference point of Figure 4-20. The axial ratio is obtained from (4-59a), and it is equal to

AR = cot(ε) = cot(0) = ∞
An axial ratio of infinity always represents linear polarization.

Example 4-10

Repeat Example 4-9 when the wave of (4-50a) is such that

�x = 0

�y = E+
y0

cos(ωt − βz + φy )

Solution: Using (4-58a) and (4-58b),

γ = tan−1

[
E+

y0

E+
x0

]
= tan−1(∞) = 90◦

and δ could be of any value, i.e., −180◦ ≤ δ ≤ 180◦. The values of ε and τ can now be obtained from
(4-61a) and (4-61b), and they are equal to

2ε = sin−1 [
sin(2γ ) sin(δ)

] = sin−1(0) = 0◦

2τ = tan−1 [
tan(2γ ) cos(δ)

] = tan−1(0) = 180◦

The polarization state (point) of this linearly polarized wave is diametrically opposed to that in
Example 4-9. The axial ratio is also infinity.
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Example 4-11

Determine the polarization state (point) on the Poincaré sphere of Figure 4-20 when the wave of (4-50a)
is such that

�x = E+
x0

cos(ωt − βz + φx ) = 2E0 cos
(
ωt − βz + π

2

)
�y = E+

y0
cos(ωt − βz + φy ) = E0 cos(ωt − βz )

Solution: Using (4-58a) and (4-58b),

γ = tan−1

[
E+

y0

E+
x0

]
= tan−1

[
E0

2E0

]
= 26.56◦

δ = φy − φx = −90◦

The values of ε and τ can now be obtained from (4-61a) and (4-61b), and they are equal to

2ε = sin−1 [
sin(2γ ) sin(δ)

] = sin−1 [− sin(2γ )
] = −2γ = −53.12◦

2τ = tan−1 [
tan(2γ ) cos(δ)

] = tan−1(0) = 0◦

Therefore, this point is situated on the principal xz plane at an angle of 2γ = −2ε = 53.12◦ from
the reference point of the x axis of Figure 4-20. The axial ratio is obtained using (4-59a), and it is
equal to

AR = cot(ε) = cot(−26.56◦) = −2

The negative sign indicates that the wave has a right-hand (clockwise) polarization. Therefore the wave
is right-hand elliptically polarized with AR = −2.

In general, points on the principal xz elevation plane, aside from the two intersecting points
on the equator and the north and south poles, are used to represent elliptical polarization when
the major and minor axes of the polarization ellipse of Figure 4-19 coincide with the principal
axes.

If the polarization state of a wave is defined as Pw and that of an antenna as Pa , then the
voltage response of the antenna due to the wave is obtained by [10, 19]

V = C cos

[
Pw Pa

2

]
(4-62)

where
C = constant that is a function of the antenna size and field strength of the wave

Pw = polarization state of the wave
Pa = polarization state of the antenna

Pw Pa = angle subtended by a great-circle arc from polarization Pw to Pa

Remember that the polarization of a wave, by IEEE standards [7, 8], is determined as the wave
is observed from the rear (is receding). Therefore the polarization of the antenna is determined
by its radiated field in the transmitting mode.
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Example 4-12

If the polarization states of the wave and antenna are given, respectively, by those of Examples 4-9
and 4-10, determine the voltage response of the antenna due to that wave.

Solution: Since the polarization state Pw of the wave is at the +x axis and that of the antenna Pa is
at the −x axis of Figure 4-20, then the angle Pw Pa subtended by a great-circle arc from Pw to Pa is
equal to

Pw Pa = 180◦

Therefore the voltage response of the antenna is, according to (4-62), equal to

V = C cos

[
Pw Pa

2

]
= C cos(90◦) = 0

This is expected since the fields of the wave and those of the antenna are orthogonal (cross-polarized)
to each other.

Example 4-13

The polarization of a wave that impinges upon a left-hand (counterclockwise) circularly polarized
antenna is circularly polarized. Determine the response of the antenna when the sense of rotation of the
incident wave is

1. Left-hand (counterclockwise).
2. Right-hand (clockwise).

Solution:

1. Since the antenna is left-hand circularly polarized, its polarization state (point) on the Poincaré
sphere is on the north pole (2γ = δ = 90◦). When the wave is also left-hand circularly polarized,
its polarization state (point) is also on the north pole (2γ = δ = 90◦). Therefore, the subtended
angle Pw Pa between the two polarization states is equal to

Pw Pa = 0◦

and the voltage response of the antenna, according to (4-62), is equal to

V = C cos

[
Pw Pa

2

]
= C cos(0) = C

This represents the maximum response of the antenna, and it occurs when the polarization (includ-
ing sense of rotation) of the wave is the same as that of the antenna.

2. When the sense of rotation of the wave is right-hand circularly polarized, its polarization state
(point) is on the south pole (2γ = 90◦, δ = −90◦). Therefore, the subtended angle Pw Pa between
the two polarization states is equal to

Pw Pa = 180◦

and the response of the antenna, according to (4-62), is equal to
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V = C cos

[
Pw Pa

2

]
= C cos

[
180◦

2

]
= C cos(90◦) = 0

This represents a null response of the antenna, and it occurs when the sense of rotation of the
circularly polarized wave is opposite to that of the circularly polarized antenna. This is one
technique, in addition to those shown in Example 4-12, that can be used to null the response of
an antenna system.

4.5 MULTIMEDIA

On the website that accompanies this book, the following multimedia resources are included for
the review, understanding and presentation of the material of this chapter.

• MATLAB computer programs:
a. Polarization_Diagram_Ellipse_Animation: Animates the 3-D polarization diagram of

a rotating electric field vector (Figure 4-8). It also animates the 2-D polarization ellipse
(Figure 4-19) for linear, circular and elliptical polarized waves, and sense of rotation. It
also computes the axial ratio (AR).

b. Polarization_Propag: Computes the Poincaré sphere angles, and thus the polarization
wave traveling in an infinite homogeneous medium.

• Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

4.1. A uniform plane wave having only an x
component of the electric field is traveling
in the +z direction in an unbounded loss-
less, source-free region. Using Maxwell’s
equations write expressions for the electric
and corresponding magnetic field intensi-
ties. Compare your answers to those of
(4-2b) and (4-3c).

4.2. Using Maxwell’s equations, find the mag-
netic field components for the wave whose
electric field is given in Example 4-1.
Compare your answer with that obtained
in the solution of Example 4-1.

4.3. The complex H field of a uniform plane
wave, traveling in an unbounded source-
free medium of free space, is given by

H = 1

120π
(âx − 2ây )e

−jβ0z

Find the:
(a) Corresponding electric field.
(b) Instantaneous power density vector.
(c) Time-average power density.

4.4. The complex E field of a uniform plane
wave is given by

E = (âx + j âz )e
−jβ0y + (2âx − j âz )e

+jβ0y

Assuming an unbounded source-free, free-
space medium, find the:
(a) Corresponding magnetic field.
(b) Time-average power density flowing in

the +y direction.
(c) Time-average power density flowing in

the −y direction.

4.5. The magnetic field of a uniform plane wave
in a source-free region is given by

H = 10−6 [−âx (2 + j ) + âz (1 + j 3)
]

e+jβy

Assuming that the medium is free space,
determine the:

(a) Corresponding electric field.
(b) Time-average power density.

4.6. The electric field of a uniform plane wave
traveling in a source-free region of free
space is given by

E = 10−3(âx + j ây ) sin(β0z )

(a) Is this a traveling or a standing wave?
(b) Identify the traveling wave(s) of the

electric field and the direction(s) of
travel.

(c) Find the corresponding magnetic field.
(d) Determine the time-average power

density of the wave.

4.7. The magnetic field of a uniform plane wave
traveling in a source-free, free-space region
is given by

H = 10−6(ây + j âz ) cos(β0x)

(a) Is this a traveling or a standing wave?
(b) Identify the traveling wave(s) of the

magnetic field and the direction(s) of
travel.

(c) Find the corresponding electric field.
(d) Determine the time-average power

density of the wave.

4.8. A uniform plane wave is traveling in the
−z direction inside an unbounded source-
free, free-space region. Assuming that the
electric field has only an Ex component, its
value at z = 0 is 4 × 10−3 V/m, and its
frequency of operation is 300 MHz, write
expressions for the:
(a) Complex electric and magnetic fields.
(b) Instantaneous electric and magnetic

fields.
(c) Time-average and instantaneous pow-

er densities.
(d) Time-average and instantaneous elec-

tric and magnetic energy densities.
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4.9. A uniform plane wave traveling inside an
unbounded free-space medium has peak
electric and magnetic fields given by

E = âx E0e−jβ0z

H = ây H0e−jβ0z

where E0 = 1 mV/m.
(a) Evaluate H0.
(b) Find the corresponding average power

density. Evaluate all the constants.
(c) Determine the volume electric and

magnetic energy densities. Evaluate all
the constants.

4.10. The complex electric field of a uniform
plane wave traveling in an unbounded non-
ferromagnetic dielectric medium is given
by

E = ây 10−3e−j 2πz

where z is measured in meters. Assuming
that the frequency of operation is 100 MHz,
find the:
(a) Phase velocity of the wave (give units).
(b) Dielectric constant of the medium.
(c) Wavelength (in meters).
(d) Time-average power density.
(e) Time-average total energy density.

4.11. The complex electric field of a time-
harmonic field in free space is given by

E = âz 10−3(1 + j )e−j (2/3)πx

Assuming the distance x is measured in
meters, find the:
(a) Wavelength (in meters).
(b) Frequency.
(c) Associated magnetic field.

4.12. A uniform plane wave is traveling inside
the earth, which is assumed to be a perfect
dielectric infinite in extent. If the relative
permittivity of the earth is 9, find, at a fre-
quency of 1 MHz, the:
(a) Phase velocity.
(b) Wave impedance.
(c) Intrinsic impedance.
(d) Wavelength of the wave inside the

earth.

4.13. An 11-GHz transmitter radiates its power
isotropically in a free-space medium.
Assuming its total radiated power is 50
mW, at a distance of 3 km, find the:
(a) Time-average power density.

(b) RMS electric and magnetic fields.
(c) Total time-average volume energy den-

sities.
In all cases, specify the units.

4.14. The electric field of a time-harmonic wave
traveling in free space is given by

E = âx 10−4(1 + j )e−jβ0z

Find the amount of real power crossing a
rectangular aperture whose cross section is
perpendicular to the z axis. The area of the
aperture is 20 cm2.

4.15. The following complex electric field of a
time-harmonic wave traveling in a source-
free, free-space region is given by

E = 5 × 10−3(4ây + 3âz )e
j (6y−8z )

Assuming y and z represent their respec-
tive distances in meters, determine the:
(a) Angle of wave travel (relative to the z

axis).
(b) Three phase constants of the wave

along its oblique direction of travel, the
y axis, and the z axis (in radians per
meter).

(c) Three wavelengths of the wave along
its oblique direction of travel, the y
axis, and the z axis (in meters).

(d) Three phase velocities of the wave
along the oblique direction of travel,
the y axis, and the z axis (in meters
per second).

(e) Three energy velocities of the wave
along the oblique direction of travel,
the y axis, and the z axis (in meters
per second).

(f) Frequency of the wave.
(g) Associated magnetic field.

4.16. Using Maxwell’s equations, determine the
magnetic field of (4-18b) given the electric
field of (4-18a).

4.17. Given the electric field of Example 4-2 and
using Maxwell’s equations, determine the
magnetic field. Compare it with that found
in the solution of Example 4-2.

4.18. Given (4-19a) and (4-19c), determine the
phase velocities of (4-22) and (4-23).

4.19. Derive the energy velocity of (4-24) using
the definition of (4-9), (4-18a), and (4-18b).
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4.20. A uniform plane wave of 3 GHz is incident
upon an unbounded conducting medium of
copper that has a conductivity of 5.76 ×
107 S/m, ε = ε0, and μ = μ0. Find the
approximate:
(a) Intrinsic impedance of copper.
(b) Skin depth (in meters).

4.21. The magnetic field intensity of a plane
wave traveling in a lossy earth is given by

H = (ây + j 2âz )H0e−αx e−jβx

where H0 = 1 μA/m. Assuming the lossy
earth has a conductivity of 10−4 S/m, a
dielectric constant of 9, and the frequency
of operation is 1 GHz, find inside the earth
the:
(a) Corresponding electric field vector.
(b) Average power density vector.
(c) Phase constant (radians per meter).
(d) Phase velocity (meters per second).
(e) Wavelength (meters).
(f) Attenuation constant (Nepers per

meter).
(g) Skin depth (meters).

4.22. Sea water is an important medium in
communication between submerged sub-
marines or between submerged submarines
and receiving and transmitting stations
located above the surface of the sea.
Assuming the constitutive electrical param-
eters of the sea are σ = 4 S/m, εr = 81,
μr = 1, and f = 104 Hz, find the:
(a) Complex propagation constant (per

meter).
(b) Phase velocity (meters per second).
(c) Wavelength (meters).
(d) Attenuation constant (Nepers per

meter).
(e) Skin depth (meters).

4.23. The electrical constitutive parameters of
moist earth at a frequency of 1 MHz
are σ = 10−1 S/m, εr = 4, and μr = 1.
Assuming that the electric field of a uni-
form plane wave at the interface (on the
side of the earth) is 3 × 10−2 V/m, find
the:
(a) Distance through which the wave

must travel before the magnitude of
the electric field reduces to 1.104 ×
10−2 V/m.

(b) Attenuation the electric field undergoes
in part (a) (in decibels).

(c) Wavelength inside the earth (in
meters).

(d) Phase velocity inside the earth (in
meters per second).

(e) Intrinsic impedance of the earth.

4.24. The complex electric field of a uniform
plane wave is given by

E = 10−2
[
âx

√
2 + âz (1 + j )ejπ/4

]
e−jβy

(a) Find the polarization of the wave (lin-
ear, circular, or elliptical).

(b) Determine the sense of rotation (clock-
wise or counterclockwise).

(c) Sketch the figure the electric field
traces as a function of ωt .

4.25. The complex magnetic field of a uniform
plane wave is given by

H = 10−3

120π
(âx − j âz )e

+jβy

(a) Find the polarization of the wave (lin-
ear, circular, or elliptical).

(b) State the direction of rotation (clock-
wise or counterclockwise). Justify your
answer.

(c) Sketch the polarization curve denoting
the �-field amplitude, and direction of
rotation. Indicate on the curve the vari-
ous times for the rotation of the vector.

4.26. In a source-free, free-space region, the
complex magnetic field of a time-harmonic
field is represented by

H =
[̂
ax (1 + j )+ âz

√
2ejπ/4

] E0

η0

e−jβ0y

where E0 is a constant and η0 is the intrin-
sic impedance of free space. Determine the:
(a) Polarization of the wave (linear, circu-

lar, or elliptical). Justify your answer.
(b) Sense of rotation, if any.
(c) Corresponding electric field.

4.27. Show that any linearly polarized wave can
be decomposed into two circularly polar-
ized waves (one CW and the other CCW)
but both traveling in the same direction as
the linearly polarized wave.

4.28. The electric field of a f = 10 GHz time-
harmonic uniform plane wave traveling in
a perfect dielectric medium is given by

E = (
âx + j 2ây

)
e−j 600πz
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where z is in meters. Determine, assuming
the permeability of the medium is the same
as that of free space, the:
(a) Wavelength of the wave (in meters).
(b) Velocity of the wave (in meters/sec).
(c) Dielectric constant (relative permittiv-

ity) of the medium (dimensionless).
(d) Intrinsic impedance of the medium (in

ohms).
(e) Wave impedance of the medium (in

ohms).
(f) Vector magnetic field of the wave.
(g) Polarization of the wave (linear, circu-

lar, elliptical; AR; and sense of rota-
tion).

4.29. The spatial variations of the electric field
of a time-harmonic wave traveling in free
space are given by

E(x) = ây e−j (β0x− π
4 ) + âz e−j (β0x− π

2 )

Determine, using the necessary and suffi-
cient conditions of the wave, the:
(a) Direction of wave travel (+x , −x , +y ,

−y , +z or −z ) based on e+jωt time.
(b) Polarization of the wave (linear, circu-

lar or elliptical). Justify your answer.
(c) Sense of rotation (CW or CCW), if

any, of the wave. Justify your answer.

4.30. The spatial variations of the electric field
of a time-harmonic wave traveling in free
space are given by

E(z ) = âx 2e−j (β0z− π
4 ) + ây e−j (β0z− 3π

4 )

Determine the:
(a) Direction of wave travel (+x , −x , +y ,

−y , +z or −z ) based on e+jωt time.
(b) Two pairs of Poincaré sphere polariza-

tion parameters (γ , δ) and (ε, τ ).
(c) Based on either one of the two pairs of

parameters from part (b), state the:
• Polarization of the wave (linear,

circular or elliptical). Justify your
answer.

• Sense of rotation (CW or CCW) of
the wave. Justify your answer.

• Axial Ratio. Justify your answer.

4.31. The time-harmonic electric field traveling
inside an infinite lossless dielectric medium
is given by

Ei (z ) = (
j 2âx + 5ây

)
E0e−jβz

where β and Eo are real constants.
Assuming a e+jωt time convention,
determine the:
(a) Polarization of the wave (linear, circu-

lar or elliptical). You must justify your
answer. Be specific.

(b) Sense of rotation (CW or CCW). You
must justify your answer. Be specific.

(c) Axial Ratio (AR) based on the expres-
sion of the electric field. You must jus-
tify your answer. Be specific.

(d) Poincaré sphere angles (in degrees):
• γ and δ

• ε and τ

Make sure that the polarization point
on the Poincaré sphere based on the
pair of angles (γ , δ) is the same as that
based on the set of angles (ε, τ ).

(e) Axial Ratio (AR) based on the
Poincaré sphere angles. Compare with
that in part (c).

4.32. In a source-free, free-space region the com-
plex magnetic field is given by

H = j (ây − j âz )
E0

η0

e+jβ0x

where E0 is a constant and η0 is the intrin-
sic impedance of free space. Find the:
(a) Polarization of the wave (linear, circu-

lar, or elliptical). Justify your answer.
(b) Sense of rotation, if any (CW or

CCW). Justify your answer.
(c) Time-average power density.
(d) Polarization of the wave on the

Poincaré sphere.

4.33. The electric field of a time-harmonic wave
is given by

E = 2 × 10−3(âx + ây )e
−j 2z

(a) State the polarization of the wave (lin-
ear, circular, or elliptical).

(b) Find the polarization on the Poincaré
sphere by identifying the angles δ, γ ,
τ and ε (in degrees).

(c) Locate the polarization point on the
Poincaré sphere.

4.34. For a uniform plane wave represented by
the electric field

E = E0(âx − j 2ây )e
−jβz

where E0 is constant, do the following.
(a) Determine the longitude angle 2τ ,

latitude angle 2ε, great-circle angle 2γ ,
and equator to great-circle angle δ (all
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in degrees) that are used to identify and
locate the polarization of the wave on
the Poincaré sphere.

(b) Using the answers from part (a), state
the polarization of the wave (linear, cir-
cular, or elliptical), its sense of rotation
(CW or CCW), and its Axial Ratio.

(c) Find the signal loss (in decibels) when
the wave is received by a right-hand
circularly polarized antenna.

4.35. The electric field of (4-50a) has an Axial
Ratio of infinity and a great-circle angle of
2γ = 109.47◦.
(a) Find the relative magnitude (ratio) of

E+
y0

to E+
x0

. Which component is more
dominant, Ex or Ey ? Use the first def-
inition of γ in (4-58a).

(b) Identify the polarization point on the
Poincaré sphere (i.e., find δ, τ , and ε

in degrees).
(c) State the polarization of the wave (lin-

ear, circular, or elliptical).

4.36. A uniform plane wave is traveling along
the +z axis and its electric field is given
by

Ew = (âx + j ây )e
−jβz E0

This incident plane wave impinges upon
an antenna whose field radiated along the
z axis is given by
(a) Eaa = (âx + j ây )e+jβz Ea

(b) Eab = (âx − j ây )e+jβz Ea

Determine the:
1. Polarization of the incident wave

(linear, circular, elliptical; sense of
rotation; and AR).

2. Polarization of antenna of part (a)
(linear, circular, elliptical; sense of
rotation; and AR).

3. Polarization of antenna of part (b)
(linear, circular, elliptical; sense of
rotation; and AR).

4. Normalized output voltage when the
incident wave impinges upon the
antenna whose electric field is that
of part (a).

5. Normalized output voltage when the
incident wave impinges upon the
antenna whose electric field is that
of part (b).

4.37. The field radiated by an antenna has
electric field components represented by
(4-50a) such that E+

x0
= E+

y0
and its Axial

Ratio is infinity.
(a) Identify the polarization point on the

Poincaré sphere (i.e., find γ , δ, τ , and
ε in degrees).

(b) If this antenna is used to receive the
wave of Problem 4.35, find the polar-
ization loss (in decibels). To do this
part, use the Poincaré sphere param-
eters.
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